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Abstract- Energy detection is best suited for the detection of licensed users when prior knowledge about 

them is unavailable. However, the presence of noise uncertainty refrains the use of energy detection for 

spectrum sensing. In this paper, we propose a refined energy detection (RED) which used dual 

threshold in the presence of noise uncertainty, and combine the concepts from game theory to achieve 

further performance improvements. The secondary user payoff is defined based on the primary user 

activity and the strategy adopted by the secondary user. The pure strategy Nash equilibrium and the 

best response for the mixed strategy Nash equilibrium are analyzed for all the possible strategies 

adopted by the secondary user. Simulations results show the effectiveness of the proposed algorithm in 

terms of greater secondary user payoff and robustness against noise uncertainty.   

 

Index terms: Cognitive Radio, Spectrum sensing, Energy Detection, Noise Uncertainty, Game Theory. 
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I. INTRODUCTION 

 

Recent studies on wireless spectrum demonstrate that the wireless communication systems suffer 

from inefficient spectrum usage in the licensed portions of the spectrum [1]. Reformation in the 

existing spectrum assignment policies is essential such that the new policy schemes would allow 

opportunistic use of the licensed spectrum by the unlicensed users. Cognitive Radio (CR) offers a 

promising solution to overcome the inefficient spectrum usage problem and anticipated to make 

this policy reformation successful. The licensed users are referred as primary users and the 

unlicensed users as secondary users in the context of CR. 

CRs are devices that can alter its parameters based on the dynamically changing environment and 

opportunistically occupy the licensed spectrum without causing interference to the incumbent [2]. 

The fundamental task called spectrum sensing enables the CR to identify the idle portions of the 

primary spectrum.  Spectrum sensing algorithms should be efficient to identify the idle portions 

accurately. Moreover, reliable spectrum sensing is highly challenging in the presence of noise 

uncertainty. A review of literature presents a number of spectrum sensing algorithms. Energy 

detection [3], matched filtering [4], cyclostationary feature detection [5], covariance based 

detection [6], Eigen value based detection [7], detection using wavelets [8] and filter bank 

spectrum estimation [9] are few among them. The performance of the existing spectrum sensing 

algorithms provide trade-offs between detection accuracy, computational complexity and sensing 

time. But their practical applicability depends very much on the information available about the 

primary signals. Energy detection is the most preferred approach for spectrum sensing when the 

CR is unable to gather sufficient information about the primary user signals.  

Originally, the energy detector is proposed for the detection of an unknown deterministic signal 

considering a flat band-limited Gaussian channel [10]. In the last decade, the energy detector 

proposed in [10] is being used for spectrum sensing to a large extend because of its simplicity 

and low computational complexity. Analytical and simulated performance analysis of energy 

detection for AWGN and fading channel models and various improved versions of energy 

detectors can be found in [11-14]. There are several contributions in which the spectrum sensing 

algorithms are analyzed under noise uncertainty [15 -18].  In [15], the authors describe the 

existence of SNR wall below which detection performance cannot be obtained effectively. The 

performance of energy detection under Log Normal approximation of noise uncertainty is 
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analyzed in [16]. The authors of [17] assume a uniform distribution for noise uncertainty and 

analyzed the performance of energy detection. A generalized energy detector is analyzed under 

noise uncertainty in [18] and observed that the traditional energy detector (TED) is best suited for 

spectrum sensing under noise uncertainty. An optimized and improved energy detection 

algorithm can be found in [19]. Issues related to the future of spectrum sensing are covered in 

[20].  

On the other hand, cooperative spectrum sensing is proposed to enhance the sensing performance 

of the secondary users [21].  There are numerous contributions which employ evolutionary game 

theory for cooperative spectrum sensing [22-23]. The authors of [22] present the spectrum 

sensing as an evolutionary game and develop a model for whether and when to share the sensing 

results for cooperative spectrum sensing. A distributed spectrum sensing game using evolutionary 

theory is designed for CR with heterogeneous traffic [23]. Another spectrum sensing model is 

formulated as an evolutionary game to study the selfish behaviour of the secondary users [24]. 

Most of the contributions based on game theory take advantage of cooperative spectrum sensing 

to achieve performance enhancements. In addition to spectrum sensing, other CR related issues 

such as spectrum sharing, spectrum access, security concerns are modelled using game theory 

[25-27].   

In this paper, we first propose a refined energy detection (RED) algorithm for spectrum sensing 

which is superior to the TED. The RED algorithm uses an arbitrary positive p instead of squaring 

to compute the decision metric and also takes advantage of the past history of decision metric to 

improve the detection performance.  Then we extend the RED algorithm suitable for spectrum 

sensing under noise uncertainty by incorporating a dual threshold and using game theory 

principles. The Bayesian belief update algorithm is employed to study the spectrum occupancy 

records from the past statistics. We observe significant performance improvements in terms of 

greater secondary user payoffs and low probability of error. The major contributions addressed in 

this paper are thus summarized: 

1. To the best of the author’s knowledge, this is the first attempt to use the game theory 

based decision making for spectrum sensing in the presence of noise uncertainty.  

2. First, the detection probability and false alarm probability of the proposed RED is 

derived. The optimum value of p maximizing the detection probability is identified.  
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3. The performance of the proposed scheme is analyzed in terms of the Receiver 

Operating Characteristic (ROC) and compared with the existing schemes. The total 

probability of sensing error and the sample complexity is analyzed against varying 

SNR.  

4. A dual threshold is employed for the RED algorithm under noise uncertainty. 

Concepts from game theory are used to arrive at a decision. The best response is 

analysed for all the strategies played by the secondary user based on the primary user 

availability. The secondary user payoff is evaluated and compared for both with and 

without noise uncertainty.    

 

II. SPECTRUM SENSING PRELIMINARIES 

 

The CR spectrum sensing can be formulated as a binary hypothesis testing problem as follows.     

                                    
0

1
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where H0 is the hypothesis denoting the absence of the primary user and H1 is the hypothesis 

denoting the presence of the primary user. y(n) is the signal received by the secondary user, w(n) 

is the Additive White Gaussian Noise (AWGN) of variance 2

w   and s(n) is the primary user 

signal with variance 2

w and assumed to be real Gaussian. Moreover, s(n) and w(n) are assumed to 

be independent of each other. The TED uses squaring operation to compute the decision statistic, 

given by 
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where Y is the decision statistic and N is the number of samples used for computation. Y is 

compared with a pre-evaluated threshold . IfY  , the decision is H1, otherwise H0. Ideally any 

spectrum sensing algorithm should select H0 when the primary user is absent and H1 when it is 

present. Practically, spectrum sensing algorithms are prone to errors which are classified as 

missed detections and false alarms. A missed detection occurs when the spectrum sensing 

outcome is H0 and the primary signal is present. On the other hand, a false alarm occurs when the 

spectrum sensing outcome is H1 and the primary signal is absent. A missed detection causes 
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harmful interference to the primary user whereas false alarm results in loss of transmission 

opportunities to the secondary user. The sensing errors are usually represented by the following 

conditional probabilities, the probability of missed detection, 
0 1Prob( / )mdP H H and the 

probability of false alarm, 1 0Prob( / )fP H H . The complementary probability of missed 

detection is the probability of detection given by
1 1Prob( / ) 1d mdP H H P   . It is desirable to 

have large Pd and low Pf for any spectrum sensing algorithm. However, there exists a trade-off 

between the two values. To depict the relationship between the two values, ROC curves are 

useful. The ROC of the TED algorithm is given by [14], 
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where,    1 22 / 1f wNQ P   .  

The TED has well-known detection performance drawbacks and its performance depends on 

factors like SNR, N and  . To enhance the performance of the TED algorithm, we propose the 

RED algorithm which is explained in the following section. 

 

III. REFINED ENERGY DETECTION ALGORITHM FOR SPECTRUM SENSING 

 

The enhanced energy detector (EED) proposed in [14] makes use of an arbitrary positive power p 

to compute the test statistic instead of squaring operation. The modified decision statistic of the 

improved energy detector Ym with pth power summer is given by, 
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where 
m  is the modified decision threshold. For any p, ( )

p
y n are independent and identically 

distributed random variables. Using [14], the mean and variance of ( )
p

y n  is given by, 
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Under H1: 

                                                   

/2 /2

1

2 (1 SNR) 1

2

p p
p

w

p
 



  
  

 
                                                   (7) 

                              2 2 2

1

2 (1 SNR) 2 1 1 1

2 2

p p
p

w

p p
 

 

       
       

    
                                 (8) 

As the random variables ( )
p

y n follow normal distribution [14], the modified test statistic also 

follows normal distribution with mean and variance values given by, 
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The Pd and Pf of the improved energy detector is given by [14], 
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IV. THE RED ALGORITHM  AND THE OPERATING PRINCIPLE 

 

Based on the modified decision statistic EED given by (4), the proposed RED algorithm is 

explained as follows. At every ith sensing instant, i

mY is computed and compared with 
m which is 

evaluated based on Pf. If Ym > 
m , then the decision is hypothesis H1. If Ym falls below m, 

additionally a comparison with the average decision statistic of the past L sensing instants avg j

m
Y  

and the decision statistic of the previous sensing instant 1i

mY  is performed with 
m . If both the 

values exceeds 
m , the decision is hypothesis H1. Otherwise, the sensing outcome is hypothesis 
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H0. This additional check helps to avoid any false alarms due to instantaneous signal energy 

drops [12].   The average signal energy of the past L sensing instants is computed as, 
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As the test statistic values of the past instants j = i, i-1, …i-L are assumed to follow normally 

distribution, their average decision statistic also follow normal distribution as given by, 

avg j

m avg avg
Y Normal μ σ~ ( , )

 

The average mean and variance of avg j

m
Y  can be evaluated as [12], 
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where M is the number of times the primary user is actually present out of the past L sensing 

instant. From the secondary user point of view, the value of M depend upon the sensing outcomes 

and may not correspond to the actual presence/absence of the primary user. Without the exact 

knowledge of M , the performance of the RED algorithm is difficult to predict, but the upper and 

lower bounds corresponding to M = 0 and M = L can be analyzed. The probability of detection of 

the RED algorithm r

dP  is given by, 
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The corresponding false alarm probability 
r

fP   is given by,  
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The probabilities of detection and false alarm of the RED algorithm are bounded by 

22r

d d d dP P P P    and 
22r

f f f fP P P P   as the value of Q function lies between 0 and 1. This 

shows that the detection probability of the RED is lower bounded by the detection probability of 
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the EED. The degradation in false alarm probability is also observed from (17). As the 

probabilities depend on the value of p, it is possible to find an optimum p which maximizes 

22r

f f f fP P P P   , (i.e) 

                                                
* arg max r

d
p

p P                                (18) 

The solution for (18) is obtained numerically as it is difficult to obtain its solution in closed form. 

It is found that the p* depends on N, SNR and Pf.  Thus p* can be computed offline for various 

values of SNR, N and Pf. For practical sensing, for a given N, Pf and the estimated SNR, p* can be 

chosen from the offline computed values. The RED algorithm is summarized in Table 1.  

 

Table 1. RED Algorithm 

 

for every sensing instant i do 

       Compute Ym 

       Compute avg j

m
Y  

       Choose p* using N, SNR and Pf 

            if 
i

mY > m , then 

             decide H1 

           else 

                if 
avg j

m
Y

> m  and 
1i

mY 

> m , then 

                    decide H1 

                else 

                    decide H0 

                end if 

           end if 

 end for 
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V. RED ALGORITHM UNDER NOISE UNCERTAINTY 

In this section, we describe the game theory based decision making technique for the secondary 

user in the presence of noise uncertainty. The threshold obtained using (11) directly depends on 

the noise power 2

w which is difficult to estimate accurately. Practically, the average noise power 

2

w  is known and it is different from the actual noise power 
2

w .  The noise power changes with 

time and location and is therefore uncertain. We assume the noise power uncertainty to be 

uniformly distributed in the interval [17] as given by, 

                                           
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where   is the factor describing the noise uncertainty. Under noise uncertainty,  >1. If noise 

uncertainty is absent,  =1. Noise uncertainty is can also be expressed in dB, denoted as del = 

1010log  . To enhance the performance of the energy detector under this environment, a dual 

threshold is used as described by, 
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where 
u

m , l

m  are the upper and lower thresholds, 
NU

0
u , 

NU

0
u are the mean values of the RED 

decision statistic for the upper and lower extremes of the noise uncertainty  given by, 
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Using (22) and (23), the decision regarding the presence or absence of the primary user is 

obtained as explained below. The RED decision statistic is compared with the upper and lower 

thresholds. If it exceeds 
u

m , the decision is H1. If it falls below 
u

m , the decision is H0. If it falls in 

between the two threshold, the secondary user choose any of the three options (i.e.,) sense again, 

decide H1, decide H0. he block diagram of the proposed RED algorithm is shown in Figure.1. 
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Based on the strategies, a dynamic game is formulated and explained in detail in the following 

section. 

 

 

 

 

 

 

 

 

 

Figure. 1    Block diagram of the proposed RED algorithm 

  

 

VI. DECISION MAKING USING GAME THEORY 

 

The secondary user spectrum sensing is formulated as a decision making problem when the 

algorithm decision statistic falls in between the upper and lower thresholds. The primary user is 

the incumbent and has the right to use its spectrum when it desires. Thus the primary user is 

either ON or OFF based on its state of requirement. On the other hand, the secondary user’s 

intention is use the primary spectrum to the maximum without violating the spectrum etiquette. 

The secondary user is uncertain about the primary user ON-OFF activity pattern. Let the 

probability that the primary is in the ON state be p1. The actions taken by the primary user is 

from its strategy space Ap = {access, don’t access}.  The secondary user chooses its actions from 

the strategy space As = {sense, access, silent}. The payoff for the primary user is always the 

spectrum gain irrespective of the secondary user’s move. The payoff matrix of the secondary user 

corresponding to any particular game stage is shown in Table 2. We define the following 

notations to formulate the secondary user payoff matrix [10]. 

G – denotes the spectrum gain. For example, the spectrum gain is the bandwidth attained by the 

secondary user. 
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Cs – denotes the sensing cost. It applies to the secondary user if it decides to sense the spectrum 

when the spectrum is actually occupied. For example, the cost refers to the energy consumed by 

the secondary user for sensing. 

P – denotes the penalty incurred by the secondary user when it causes interference to the primary 

user. For example, the secondary user may be forbidden to use the spectrum for a particular 

amount of time. 

R – denotes the reward for the secondary user and it applies if it does not cause interference to the 

primary user. 

We assume that the relationship between the parameters follow P > G > Cs and R > Cs. The 

reasons behind the constraints are as follows: 

P > G: The interference caused to the primary user is highly unacceptable. This constraint 

ensures that the secondary user would not access the spectrum to avoid interference to the 

primary user.  

G > Cs: This is the constraint which ensures that the secondary user gains incentives for spectrum 

access. Otherwise, the secondary user will be reluctant to use the spectrum if the additional 

sensing cost exceeds the spectrum gain. 

R > Cs: The reason behind this constraint is to assure that the secondary user gain incentives for a 

correct decision.  

 

Table 2: Secondary user payoff matrix 

Secondary User Primary User ON (p1) Primary User OFF(1- p1) 

Sense R - Cs -G + Cs 

Access -P + G G 

Silent R -G 

 

The payoff matrix is analyzed for the two cases namely, the primary user if ON and OFF. When 

the primary user is ON, the secondary user gets a reward R if it chooses silent. Alternatively, if it 

chooses to sense it incurs a sensing cost Cs in addition to the reward R. Hence, the overall payoff 

is R – Cs for this case. If the secondary user chooses to access the spectrum, it gets a penalty P for 

interfering with the primary user besides gaining the spectrum. In this case, the overall payoff is –

P + G. When the primary user is OFF, the secondary user gains the spectrum if it chooses to 
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access with the payoff G. If it chooses to be silent, it loses the free spectrum with a payoff of –G.  

On the other hand, if it chooses to sense, in addition to spectrum loss it incurs positive sensing 

cost and the total payoff is –G+Cs. The sensing cost is positive because when the primary user is 

OFF, additional sensing may result in a positive decision for the secondary user. 

 

a. Pure Strategy Nash equilibrium analysis  

 

A specific action that the player will follow in every possible attainable situation is defined as  

pure strategy. In game theory context, a particular strategy '

is of player i is strictly dominated than 

his other strategy si if, 

   ' , ,i i i i i iu s s u s s 
 

And weakly dominated if,   

   ' , ,i i i i i iu s s u s s 
 

where 
 ,iu  

 refer to the payoff of the player i. A two player game has unique pure-strategy 

Nash equilibrium if each player has a dominant strategy [27]. 

The primary user has the highest priority as has the pure-strategy Nash equilibrium as spectrum 

gain. Thus, we analyze the Nash equilibrium for the secondary user.  

Lemma 1: As the primary user does not maintain one particular state (OFF or ON), pure-strategy 

Nash equilibrium does not exist for the secondary user. 

Proof: Table 1 shows that the pure-strategy Nash equilibrium for the secondary user is choosing 

silent when the primary user is ON. For the second case when the primary user is OFF, the pure-

strategy Nash equilibrium for the secondary user is choosing access. As the primary user does not 

maintain a single state, the game will not converge to unique pure-strategy Nash equilibrium for 

the player. Thus, we analyze the mixed-strategy Nash equilibrium for the secondary user. 

 

b. Mixed Strategy Nash equilibrium analysis  

 

The mixed-strategy Nash equilibrium is investigated by assigning probabilities to the pure 

strategy space which refers to how frequency each pure strategy is played. Here the game is a 

single player decision making process and hence we define the mixed strategy Nash equilibrium 
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based on the probability of the primary user being ON. The mixed strategy space of the 

secondary user is defined as {sense, access, silent}. The choice of the mixed strategy such that 

the secondary user attains a best response is analyzed.  

Lemma 2: The existence of mixed-strategy Nash equilibrium is identified in this game if, the 

secondary user choose access if 1

2

2( )

s

s

G C
p

R P G C



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, choose sense if 

1

2 1

2( ) 2

s

s

G C
p

R P G C


 

  
and choose silent if 

1

1

2
p  . 

Proof: The game tree for a single game stage is shown in Figure.3 for the secondary user. The 

expected payoff for the secondary user can be calculated as follows. 

 

 

 

 

 

 

Figure. 3 Game tree showing all possible actions for the secondary user 

 

The expected secondary user payoff for all the actions in the space As is given by, 

                                              1 1 1[ , ] 1s sE sense p p R C p G C                                         (24) 

                                             1 1 1[ , ] 1E access p p P p R                                    (25) 

                                             1 1 1[ , ] 1E silent p p R p G                                       (26) 

It should be noted that the mixed-strategy Nash equilibrium can be found by finding the best 

response for the secondary user as a function of probability of primary user being ON.  

It can be readily obtained from the plot of the payoff function given by (24), (25) and (26) as 

shown in Figure.4. To find the best response, the primary user ON probability is obtained at the 

two relevant intersections. 
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Figure. 4    Expected secondary user payoff against p1 

Equating (24) and (25), 

         1 1 1 11  = 1s sp R C p G C p P p R       
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


    

Equating (24) and (26), 

         1 1 1 11 1s sp R p G p R C p G C        
 

1

1

2
p 

. 

The best response (BR) for the secondary user is thus given by, 

                                          

1

1

1

2
access  if 

2( )

2 1
sense if 

2( ) 2

1
silent  if 

2

s

s

s

s

G C
p

R P G C

G C
BR p

R P G C

p


   


 

  
  






                                       (27) 

In practice, the value of p1 is unknown to the secondary user. In order to find its strategy, the 

secondary should develop a model to estimate the value of p1 from the past statistics. We use the 
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basic Bayesian belief update algorithm with weighted coefficients to estimate the probability of 

primary user being ON [27]. The Bayesian belief update with weighted coefficients to update the 

belief of secondary user during any jth stage is given by, 

                                     
   

       
1 1

1 01 1

(ON)
1 1

r r

d dj j

j r r r r

d d f fj j j j

w P
p

w P w P



 


  



 
                             (28) 

where  
1

r

d j
P


and  

1

r

f j
P


 is the detection and false alarm probability obtained using RED 

algorithm at the (j-1)th sensing instant,  r

d j
 and  r

f j
 is the detection and false alarm 

probability obtained for RED algorithm with noise uncertainty obtained using the upper 

threshold. w0 and w1 are the weighing factors to highlight the priority of primary user activity. If 

the secondary user decides that the primary user is ON due to noise uncertainty, then it loses the 

spectrum or additionally it may incur sensing cost if it chooses to sense. Therefore, it loses a total 

of G + Cs. Conversely, if it decides that the primary user is OFF, the secondary user may incur a 

total loss of G + P. Based on these factors, the weighing factors can be defined as, 

                                                        1
2 s

P G
w

P G C




 
                                                     (28) 

                                                        0
2

s

s

C G
w

P G C




 
                                                     (29) 

Thus the strategy for the secondary user can be set based on its own belief about the primary user. 

To summarize, the actions taken by the secondary user are given as follows: 

For the primary user, 

 If there is a need to transmit, then access the spectrum.  

 The probability of being ON for the primary user is p1 and being OFF is 1-p1. 

For the secondary user, 

 If there is a need to transmit, 

 Sense the spectrum and compute the decision statistic Y. 

 If Y > u, then access the spectrum. The payoff is E(s) =  G 

 If Y < l, wait for the next sensing event. The payoff is E(s) =  R 

 If l < Ym < u , The payoff is given by Equations (10-12) with p1 = 1

jp .  
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IV.  SIMULATION RESULTS AND DISCUSSIONS 

 

In this section, first the theoretical and simulated results of RED algorithm are presented. Then 

the simulated results of the RED algorithm with noise uncertainty are presented. Simulated 

results are obtained using Matlab with 100000 Monte Carlo iterations.  

First the optimum p is identified for the RED algorithm. Then the ROC performance of the RED 

algorithm for the optimum p is compared with the existing algorithms. Then the total error 

probability (Pmd + Pf) and the sample complexity of the RED algorithm against SNR is obtained 

numerically and compared with existing algorithms.  Finally, the expected payoff for the 

secondary user is analyzed for varying probability of primary user being ON and the efficacy of 

the proposed decision making under noise uncertainty is justified. 

 

a. Identifying optimum value of p 

 

In Fig. 3 and Fig. 4, we obtain the curve of Pd against p for the RED and TED algorithms. It is 

observed for the TED algorithm that there exists a maximum Pd for a particular value of p. This is 

the optimum p which improves the detection performance for the given Pf, N and SNR. Similarly, 

a global maximum value is observed for Pd for the RED algorithm and it is greater than the TED 

algorithm. The optimal p also depends on the past observations (i.e), the number of times the 

primary signal is actually present M. This is due to the fact that the average mean and variance is 

a direct function of M.  

Thus it can be concluded that the incorporating the past observations with TED greatly improve 

the detection performance. Figure. 5 and Figure. 6 also show that the optimum value of p 

depends on the value of Pf. 

To illustrate the benefit of the operator ‘p’ in the RED algorithm, we evaluate the optimum p for 

varying Pf. As seen from Figure. 7, the optimum p is different for varying Pf. It declines as the 

false alarm rate increases. Thus the optimum value of p can be stored as an offline table for 

various spectrum sensing parameters such as SNR, Pf, and N. Based on the requirement, a perfect 

choice for p can be obtained quickly from the table and sensing can be performed. 
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Figure.5  Pd against p for Pf = 0.1, N = 1000 & SNR = -10dB 
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Figure.6  Pd against p for Pf = 0.01, N = 1000 & SNR = -10dB 
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Figure.7  Optimum p against Pf, N = 1000 & SNR = -10dB 

 

b. ROC performance of the RED Algorithm  

 

Figure. 8 and Figure. 9 show the ROC characteristics for the proposed and the existing 

algorithms.  
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Figure. 8 ROC curves for Pf = 0.1, N = 1000, SNR = -10dB  & M =0, L=10 
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. The ROC curves are obtained using (3), (11), (12), (16) and (17) with Pf = 0.1, SNR = -10dB, 

N=1000 and M = [0, L].  As it is appreciated, the performance is upper bounded by the RED 

algorithm. We also consider the IED is the improved energy detection algorithm proposed in [12] 

for comparison.  When M=0, the IED performance coincides with TED because the sensing 

outcome is mostly based on the current sensing event. But an improved performance is obtained 

for the same with optimal p using RED. As M increases, errors caused due to misdetections are 

avoided resulting in an improved performance. For any M, the RED performance is found to be 

superior.   
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Figure. 9 ROC curves for Pf = 0.1, N = 1000, SNR = -10dB  & M =L=10. 

 

c. SNR Performance of the RED Algorithm 

 

The total error probability is observed against SNR in Figure. 10 and Figure. 11 for optimal p, M 

= [0, L] and fixed Pf, N. For M = 0, the error probability obtained using RED is less for low SNR 

values and matches with IED and TED as SNR increases. As M > 0, the error probability of RED 

is the least over the entire range of observed SNR. This is because IED algorithm suffers from 

significant false alarm degradation.  
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Figure. 10 Probability of error against SNR for Pf = 0.1, N = 1000, SNR = -10dB  M =0 & L=10 
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Figure. 11 Probability of error against SNR for Pf = 0.1, N = 1000, SNR = -10dB  &  M =L =10 
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Figure. 12 Number of Samples against SNR for Pf = 0.1, Pd = 0.1,  N = 1000 

  

In Figure. 12, the number of samples required for all the three algorithms is observed against 

SNR for a target Pd and Pf. For TED, the sample complexity is determined easily using eq (3), 

whereas for IED and RED it is obtained numerically. It is great to note that the proposed RED 

method requires less number of samples over IED and TED algorithms.  

 

d. RED Algorithm under noise uncertainty 

 

In this section, we conduct numerical analysis and express the secondary user payoff over game 

stages. The parameters used the game theory analysis are assumed as follows: P = 100, R = 100, 

G = 50 and Cs = 20. The following probability values are assumed for the primary user activity, 

p1= 0.05, 0.2, 0.35 and 0.5. The secondary user is not aware of these actual values and hence start 

with an initial value of p1 = 0.5. As the game progresses, the secondary user updates its belief. 

Initially, we study the secondary user payoff under various noise uncertainty factors and compare 

with the TED algorithm.   Figure. 13 and Figure. 14 show the secondary user average payoff per 

stage for the RED algorithm averaged over 100 game stages for del = 0.1 and 0.2 respectively. 

For comparison, the constant payoff obtained using TED algorithm is considered. As illustrated, 
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the proposed game theory based RED algorithm achiever larger payoff even in the presence of 

noise uncertainty.   
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Figure. 13 Secondary user average payoff per stage for del = 0.1 dB 

(Pf = 0.1, N = 1000, SNR = -10dB) 
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Figure. 14 Secondary user average payoff per stage for del = 0.2 dB 

(Pf = 0.1, N = 1000, SNR = -10dB) 
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Next, the average secondary user payoff obtained over 100 stages for increasing probability of 

primary user being ON (p1) is shown in Figure, 15.  
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Figure. 15 Secondary user average payoff per stage against probability of primary user being ON 

(Pf = 0.01, N = 1000, SNR = -10dB, del = 0.1 dB) 
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Figure. 16 Secondary user average payoff per stage against probability of false alarm 

(p1= 0.5, N = 1000, SNR = -10dB, del = 0.5 dB) 
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The decrease in the average payoff against p1 is evident as the increase in the primary user being 

ON will offer less spectral opportunities for the secondary user. Finally, we show that for 

increasing false alarm probability, the average secondary user payoff initially increases and 

becomes approximately constant in Figure. 16.  This is because for low values of false alarm, the 

detection probability is also low and increases with increasing false alarm probability as evident 

from the ROC performance.  

 

V. CONCLUSIONS 

 

In this paper, a RED algorithm is proposed for spectrum sensing to enhance the performance of 

sensing accuracy. First, the probability of detection and false alarm of the proposed RED 

algorithm is derived. The optimal value of p which maximizes the detection performance is 

identified. The ROC performance, sensing error and sample complexity against SNR of the RED 

algorithm are observed and found to outperform the existing algorithms. Then the RED algorithm 

is extended for improving the sensing performance against noise uncertainty. A dynamic game is 

formulated between the primary user and the secondary user in which the primary user has the 

highest priority. Secondary user sensing strategies are devised when it is unable to make a hard 

decision regarding the state of the primary user. The expected secondary user payoff is calculated 

taking into account the actions played by the secondary user. The probability of choosing a 

particular strategy such that the secondary user payoff is maximized is analyzed. The Bayesian 

based belief update algorithm with weighted coefficients is used to build a decision about the 

state of the primary user. Simulation results validate the efficacy of the proposed RED algorithm 

and found to be superior over the existing schemes in terms of ROC, greater secondary user 

payoff and better robustness against noise uncertainty.  
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