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Abstract- A new technique Multiple-feature-based adaptive sparse representation (MFASR) has been
demonstrated for Hyperspectral Images (HSI’s) classification. This method involves mainly in four
steps at the various stages. The spectral and spatial information reflected from the original
Hyperspectral 1mages with four various features. A shape adaptive (SA) spatial region is obtained in
each pixel region at the second step. The algorithm namely sparse representation has applied to get the
coefficients of sparse for each shape adaptive region in the form of matrix with multiple features. For
each test pixel, the class label is determined with the help of obtained coefficients. The performances of
MFASR have much better classification results than other classifiersin the terms of quantitative and
gualitative percentage of results. This MFASR will make benefit of strong correlations that are
obtained from different extracted features and this make use of effective features and effective adaptive

sparse representation. Thus, the very high classification performance was achieved through this
MFASR technique.

Index Terms: Hyperspectral Images, Classification, Adaptive sparse representation, Feature extraction,
Spar se representation.
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I. INTRODUCTION

In recent years, Hyperspectral Image (HSI) plays an important role in the classification [1] - [5]
field of remote sensing, which has involved in various applications and fields, such as
Identifying of ground elements [6], Exploration of minerals [7] and Target detection. In
Hyperspectral Images, the very high dimensional vector present in a each pixel and this
represents the response of spectral in different spectral bands according to their entries. The
pixels in Hyperspectral Images have been used in various applications, such as Anomay
detection [8], spectral unmixing [9] and classification [10]. The classification of Hyperspectral
Images can be done with applying test pixels to each classes depends upon its characteristics of
gpectral information with a given training set.

The purpose of classification for the classes is to assign each test pixel in agiven training set. To
avail these functionalities, the two main approaches are Support Vector Machine (SVM) [11],
[12] and multinomial logistic regression (MLR) [13] — [15]. The decomposition of an input pixel
from an overcomplete dictionary is called as Sparse representation [16] — [20], which acts as an
important classifier. To process an adaptive metric learning method and a novel technique for
Hyperspectral image classification, a new technique caled Metric Learning [21] is used. This
method acts as object recognition. According to this classification method, the various
classification techniques such as clona selection feature extraction [22], semisupervised
discriminative locally enhanced alignment [23], Principle Component Analysis (PCA) [24] and
kernel discriminative analysis [25]. To enhance the class seperability problems [26], a kernel
[27] method has been used in the above mentioned approaches.

The Extended Morphological Profiles (EMP) [28], [29] make use of pixels spatial information
and this enhances the structure of neighbourhood pixels in Hyperspectral Images (HSI’s). In a
local region, the spatial information of each test pixels are pre-processed efficiently [30]. The
classification of Hyperspectral images can be done by using k-means clustering [31], [32] and
these superpixels do not have the correlations among themselves. To make use of visual
recognition [33] — [35], an analyse of superpixels has been made in computer vision. In order to
slowdown the difference between the domains of both source and destination, an adaptation
framework that is having multiple kernels is used [ 36].

In order to achieve good accuracy of HSI classification, the supervised classifiers are neural
networks [37], kernel based methods [38], [39] and Bayesian [40]. If the number of training
samples is limited and fixed, it increases the data dimensionality [41]. This causes high
computational cost and to solve these problems, a feature reduction methods are used [42] - [47].

The spatial feature plays an important role in the field of classification of HSI’s [48], [49]. To
improve the classification performance, the composite kernels combines spatial and spectral
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information [50].The combination of kernels can be represented as standard composite kernels
and multiple kernel learning [51]. To solve the problem of optimization, the newly proposed
method named generalized composite kernel is used [52]. In linear spatial-spectral features, the
two methods maximum noise fraction [53] and independent component analysis [54] are used. In
non-linear transformations, the manifold regularization methods [55] and extended multiattribute
profile [56] are illustrated. To incorporate linear and non-linear multiple features, multiple
feature learning (MFL) [57] and multinomial logistic regression (MLR) [58] are used in MFL
and GCK methods.

The distance weighted tikhonov regularization [59] and nearest subspace classifier are
incorporated with the help of nearest regularized subspace (NRS). To overcome the drawbacks
of NRS, the joint collaborative representation (JCR) [60] is proposed. The JCR works with
surrounding pixels with same weights. To solve this issue, Weighted Joint Collaborative
representation (WJCR) [61] is introduced to make use of different weights that lies in between
neighbour pixels and the central pixel.

The HSI is used to achieve spectral pixels that are present in the spectral information with the
help of various classifiers, such as Support Vector Conditional random classifier [62], neural
network [63], adaptive artificia immune network [64], support vector machine [65] — [67],
multinomial logistic regression [68], [69] and artificial deoxyribonucleic acid computing [70].
The composite kernel method is used to incorporate spectral and spatial information accordingly
for each test pixel in HSl [71], [72]. Thus, a Bayesian-based approach is further used to make
benefit of neighbouring pixels[73].

To increase the accuracy of ground object elements [74-77], HSI provides the acquisition of
spectral information reflections simultaneously. To obtain the Hyperspectral Image classification
performance [78-85], the representation based classification methods are used. In order to get
good classification results, the various applications [86-92], are used for sparse representation
classification (SRC) [93]. Collaborative representation classification (CRC) [94] is applied to get
the good classification accuracy result. To avail a better result than the spectral information [95-
98], spectral information is used in HSI.

Hyperspectral Images contains the hundreds of spectral bands that are reflected from ground
elements and this can be applied to various domains, such as military [99], [100], Environmental
monitoring [101], [102] and Agriculture [103-105]. In HSI, the categorization of test pixels
obtained by using supervised HSI classification [106-112]. The various classification methods
are used [113-115] in the field of spectral pixel-wise method. The spatial information provides
the various pixels are present inside the local region that contains the spectral characteristics of
information and ground objects similarly [116-124].

According to this spectral information, this produces the classification maps result with a result
of very high noisy [125] [126]. To enhance the performance of classification, some techniques
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[127] [128] have been examined to make use of spatia — spectral information. The method
named region — based sparse representation [129] involves the region that contains some pixels
always determines the same class. This representation defines the test pixel for the fixed region
and then decomposes the various pixels related to the same region present in the same atom.

The region size is fixed, so that the Hyperspectral Images do not make the spatial information
sufficiently. To improve the better classification performance, the neighbouring pixel which
belongs to the central test pixels, the different weights are allocated [130]. The new approach
named Batch — mode active learning was introduced to make use of spatial coherence
Information [131]. The feature extraction method was approached to obtain the better
classification results.

The main feature named Extended Morphological Profiles that are implemented with the help of
Principle Component Analysis (PCA) [132]. In order to classify the HIS, morphological profiles
can be set to create a transforms of both opening and closing from a very large feature set. The
Hyperspectral Images data contains spectral information of the covered area, but it has no spatial
information. The spatial information present in an individual image, since it has very low
spectral data in that obtained image. If an origina image contains in a profile, the base image
acts as a principle component for an extended morphological profile.

A new approach called Multiple- feature learning algorithm is used for extraction of linear and
non — linear features [133]. With this multiple feature learning classifier, HSI has achieved
greater classification performance, but it is efficiently applied for fixed size window and it
cannot make use of HSI spatia correlations [134]. This spatial correlations does not suitable for
multiple feature based classifier [135].
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Figure. 1. MFASR Architecture
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To avoid these circumstances, a new technique named Multiple -feature- based adaptive sparse
representation (MFASR). This MFASR has involved in four steps. Each step process the HSI
data on its own way. A shape adaptive (SA) region is used for the window in a fixed size range,
so that it can make use of its neighbouring pixels. The usage of adaptive sparse representation is
implemented in the shape adaptive region will break the pixels effectively. This exploits all the
correlations among themselves in the four features mentioned above in an effective way. To get
the good classification map results, it joints al the correlations in a single way for each test
pixelsin agiven obtained class label.

1. CLASSIFICATION TYPES
a. Support Vector Machine (SVM)

Machine learning algorithms are widely used in classification of HSI in agriculture field. This
algorithm is implemented in various fields, such as KNN [136], Artificial Neura Networks
[137], [138] and Decision tree [139]. To understand the concept of Statistical learning theory, the
Support vector machine (SVM) is introduced [140], [141]. This SVM is applied to various
emerging fields, such as cancer recognition [142], text classification [143], [144], credit scoring
[145-147] and Image retrieval [148].

Support vector machines are also known as Support vector networks, which is a supervised
learning used in machine learning. This SVM approach can be used to analyze the data that are
used for HSI classifications and the regression analysis. The supervised learning is not at all
possible to implement, when the data are not labelled. In such cases, an unsupervised learning
method is required to organize the clustering data into groups and then gives the new data. This
automatically improves the SVM clustering algorithm and this process is called Support V ector
Clustering. SVM is applied to the training sets of any classes so that a hyperplane with good
separation is achieved. The data was mentioned as p — dimension vector and the separation can
be addressed in such a vector p with a p-1 dimensional hyperplane. This process is caled as
Linear Classifier.

b. Sparse Representation Classification (SRC)

To overcome the problem of optimization, the various pursuit methods are Basis pursuit [ 149],
orthogonal matching pursuit [150], matching pursuit [151], K-SVD method [152] and LARY
homotopy methods [153]. To apply the sparse representation to various applications, such as
image inpainting, signal separation and coding. [154-158]. This SRC representation also applied
to the field of digital image processing like face recognition [159], fusion [160] and Interpolation
[161]. This sparse classifier (SR) [162-167] is widely used in HSI classification for acquiring
better classification results.

The Sparse representation classification has implemented in various fields, such as Target
detection [168] [169], Denoising [170], reconstruction [171] — [173] and Tracking [174]. A pix€

571



S. Srinivasan and Dr. K. Rajakumar
A review on multiple-feature-based adaptive sparse representation (MFASR) and other classification

types

in Hyperspectral Image is denoted by ‘X’, which is referred as X=[X1, Xo...Xx] € R™*, where N
isthe Number of Spectral bands.

SRC [175] framework takes a pixel X form a particular class C to obtain the Dictionary D from a
linear combination of all the atoms selected. Therefore, D = [Dy, D»... D] € RV, where Cisa
classand M isthe Training samples.

c. Joint Sparse Representation Classification (JSRC)

The JSRC isimplemented in a fixed size region for each test pixels and thus construct a form of
matrix aong with the neighbouring pixels. This determines the class label for each test pixel by
jointly adopted coefficientsin the broken dictionary of all the atoms. [176], [177].

d. Collaborative Sparse Representation (CRC)

Collaborative sparse representation classification is mainly used for HSI classification. This CRC
effectively enhance the classification efficiency of SRC. The CRC is then applied to the kernel
technique to enhance the classification results and this indicates the KCRC (Kernel CRC).

This Kernel CRC will classify the HSI with the small number of complexity issues and this
provides the greater performance compared with SRC. Then this will applied in a different
direction with the training samples obtained, since it was extracted from SVM. The Kernel CRC
might avoid the data distribution in the same direction.

e. Shape Adaptive Joint Sparse Representation (SAJSR)

The method named SAJSR classifies the HSI in the various steps. Initially, the Principle
Component Analysis (PCA) is applied to the Hyperspectral Images. Then the Shape Adaptive
algorithm is applied to each test pixel in aform of region.

Finally apply the Joint Sparse Representation classifier to the Shape Adaptive region within a set
of pixels to outcomes the good classification results. This representation is widely used in maor
applications, such as Fusion, Interpolation, face recognition, etc.

f. MFASR - pixelwise

Each pixel “x” in a multiple feature can be denoted as x“F={x*}, k=1,2,3,4 where x¥is thefeature
vector. Similarly, the dictionaries for different features can be defined as DMF={ DX}, k=1,2,3,4
which is obtained by four features that extracts he pixels accordingly.

Orthogonal Matching Pursuit (OMP) — For each iteration, the OMP adds a new atom at the
existing atom. It will not pick the same atom again and again, once it used the atom before. Thus
the linear combination of all atomsis projected in the active set.
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Figure. 2. (a) Pixel-wise multiple-feature-based joint sparse model (b) Pixel-wise Multiple-
feature-based Adaptive sparse model.

[1l. REVIEW OF LITERATURE

Ping Zhong et a., has suggested that the diversity regularization to improve the HSI
classification in Deep Belief Networks to both the procedures of pretraining and fine tuning
methods. To improve the further computationa efficiency, Deep belief networks hidden units
has introduced to promote other diversities.

Jiangtao Peng et al., exploits the method named Ideal Regularized Composite Kernel (IRCK) to
improve the various information, such as spectral, spatial and label information. This improves
the state - of -the - art kernels that contains various information and this regularized all the above
information.

Zhixi Feng et al., states that to understand the data in al dimensions to get accurate and rapid
HSI in order to achieve images using Supervised Tensor Sparse Coding (STSC). The HSI can
rapidly cluster the various images and obtained the result as superpixels tensors. The various
accuracies levels, such as overall accuracy (OA) and kabba coefficient (KC) in order to achieve
good HSI in avery good performance level.

Junshi Xiaet al., has suggested that a method named Rotation random forest via kernel principle
component analysis (RoRF — KPCA). This divides into several subsets on the feature space and
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those subsets were combined with the help of RF classifiers. This method gives the good
performance compared with earlier methods, such as SVM, random forest, Etc.

Zengmao Wang et al., states that to get the better training samples quality, a method named
Active learning is used. To improve the training samples quality, a semisupervised learning
method is approached. To get the high classification of HSI, the supervised method is used.

LixiaYang et al., has suggested that to obtain a good accuracy and efficiency of HSI, a method
named Sparse Spatio - Spectral — LapSVM is implemented. This performs on both labeled and
unlabeled of spatial and spectra information to get the regularized spectral and spatial
information to get high accuracy, since they perform on few labeled samples.

Sen Jia et d., illustrates that to improve the classification of HSI, the images can be segmented
into various different homogenous sections that are referred as Superpixels. To extract the
discriminative features, the techniques called 2-D Gabor filters are implemented. The Gabor
cube is further used to reduce dimensionality with the help of spatia — spectral schroedinger
eigenmaps (S'E). The further Gabor - S’E- MTLsyw is applied to reduce the complexity problem
of computational issues compared with previous techniques.

Haoliang Yuan and Yuan Yan Tang have suggested that to reduce the pixels dimensions,
Subspace Learning (SL) method is used. To extract the feature representation, a framework
called Ridge Linear Regression (RLR) method for SL is used.

Chunjuan Bo € d., states a two main techniques called point to set distance and local weight
assignment to obtain a good consistency in the spatial information within a nearby neighboring
pixels. To improve afurther performance of Weighted Generalized Nearest Neighbour (WGNN),
a novel label refinement is implemented. Further to improve classification performance, a set
based classification will be approached.

Bushra Naz Soomro et ., illustrates a two main classification approaches called Sparse
representation classification (SRC) and Collaborative representation classification (CRC)
exploits a labeled samples and processes al the queries of all the classes. The context- aware
elastic net (ELN) further approached to develop the neighbouring graph with the help of image
dispatch distance. In future, it focuses on dictionary of both feature and spectral space to acquire
good accuracy of HSI.

Lin He et a., has suggested a method named Discrete Space method (DSM) in order to reduce
the computational complexity compared with support vector machine (SVM). This approach gets
a result of discrete features from continuous spectral signatures. Thus improves the SVM
classification accuracy with the help of discrete space method.
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Li Xie et d., states a method to decrease the computational complexity and accuracy of HSI
classification, when compared with 3D spectral — spatial Gabor filter. This combines a various
rank filters that is low pass and band pass filters to obtain a good results of HSI classification.
This decomposes the various filters into eight subfilters to achieve a good accuracy level.

J. L. Crespo et d., illustrates the process of decision module used to provide a probability vector
that uses a Hyperspectral image segmenter and multi image segmenter gives an application of
both paralel and concurrent application of Artificial Neural Network (ANN). These ANN uses
an algorithm called Gaussian Synapses back propagation that incorporates Gaussian Synapses.

M. Fauve et a., states the process of spectral and spatial information for Hyperspectral Image
classification. The spatial information uses a set of pixels that are extracted from an object than a
normal pixel level. The spatial structure of an image includes size, orientation and contrast that
provides the Morphologica profiles named as Mathematica Morphology. The Support Vector
Machine (SVM) used for applying classification on both spatial and spectra information. This
method obtains the better classification result of Hyperspectral image by using spectral and
gpatia functionalities.

H. R. Kdluri et al., has suggested to deal with high-dimensional feature space in both single and
multiple classifiers. This paper proposes a new technique for spectral information for the
classification for robust land cover with a method of decision-level fusion. The spatia
derivatives reduce the problem of over-dimensionality by the means of classification of
Hyperspectral images (HSI’s). This method gives the overall qualified classification accuracy
with the help of reflectance information.

S. Li and L. Fang have stated the process of signal denoising with the help of Random Refined
Orthogona Matching Pursuit (RROMP) by the means of an effective algorithm called Sparse
recovery. This algorithm was applied for multi-selection approach and a control of false
discovery rate (FDR) with several sparse representations. This method gives more accurate
result by the means of mean-square-error (M SE) technique.

H. Liueta., has stated a new technique named Principle Component Anaysis (PCA) and Loca
Sparse Representation (LSR) for robust object tracking. In Principle Component Analysis, the
patches are obtained from the error map gives the combination of target and blockage of
candidate. To find the error and detect the blockage, the method caled LSR is used. This
provides the effective object tracking method for the sequences of an image.

J. Wright et al., illustrates the two main approaches named Feature extraction and blockage to
robustness in face recognition technique. In feature extraction, the sparse representation feature
is comparably very large and this is computed very correctly. The Sparse representation is
mainly used to maximize the robustness due to blockage while choosing the training images.
This method will efficiently verify the available database publicly.
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S. G. Mdlat and Z. Zhang have stated the new concept for obtaining the waveforms through by
separating signals from arequired dictionary is called Matching Pursuit. This Matching Pursuit is
used to calculate adaptive signals by the means of general procedures. The obtained waveforms
are collected accordingly to the signal structures matches.

T. C. Bau et d., has stated a new model named 3D-Gabor filters for spectral and spatia
information. The Hyperspectral images are processed by 3D- Gabor filters to obtain the
wavelength properties, scale and directions in an effective way. The large number of spectral and
gpatial information is processed by these filters and thus improves the performance and
efficiency of an image region. These filters are first applied to Airborne visible and Infrared
imaging Hyperspectral datato obtain the better classification result.

M. Fauve et a., illustrates the approaches of spatial and spectral information for Hyperspectral
Image classification. The Morphological profiles used to overcome an issue to obtain one feature
vector from two vector attributes. Once the dimensionality of an image is reduced, the Support
Vector Machine (SVM) is applied to get the better classification result. This approach gives the
better result of feature reduction upto 79% to 83%.

L. Shen and S. Jia have stated a new approach for Hyperspectral Image classification named 3D-
Gabor-Wavelet for pixel-wise images. This 3D-Gabor-Wavelet is used to extract spectral and
gpatial domains jointly and separately. This usually extracts the appropriate information from an
each test pixel. This approach applied to real datasets of Hyperspectral Images (HSI’s) and
achieves a good accuracies result of 96.04% and 95.36% appropriately.

X. Huang and L. Zhang have stated a method for pixels and objects to combine the different
features of spatial and spectral information called Support Vector Machine (SVM) Ensemble
approach. This approach works with feature extraction, composite kernels and vector stacking
while compared with other SVM multifeature methods. This method paralel improves the
accuracy level from 1 — 4% on three datasets.

L. Fang et al., has stated an efficient tool named sparse representation for Hyperspectral Image
Classification (HIC). This Sparse representation test with each pixel and defines alocal region of
an image. These regions are jointly represents from a given set of training samples. This
approach allows the atoms to be selected from various pixels and provides an improved
classification representation method. This Sparse representation classifier gives the classification
method in both Qualitative and Quantitative results by the means of accuracy.

V. CONCLUSION

The different classification methods and Multiple-feature-based Adaptive Sparse Representation
(MFASR) were discussed in this paper to obtain the good classification results. The various
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methods of classification are used in Hyperspectral Images (HSI’s) to identify the ground
elements, minerals and Skin imaging. The method Adaptive sparse representation was mainly
implemented to make use of various correlations obtained from different features. Furthermore, a
Shape-adaptive region exploits the spectral and spatial information of Hyperspectral Images
(HSI’s) for each test pixel in four different features.

An MFASR method process the Hyperspectral Images in four different stages. First, the spatia
and spectral information obtained from an original HSI’s. Then, the shape adaptive (SA) spatial
region is tested in each test pixel. Then, the coefficients are obtained from each test pixels by
using Adaptive sparse representation. Finally, the class label is obtained from each test pixels by
combining the obtained coefficients. This MFASR method gives n effective quantitative and
qualitative resultsin the form of classification maps.
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