
INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS VOL. 10, NO.3, SEPTEMBER 2017

HARDWARE IMPLEMENTATION OF METHODOLOGIES OF

FIXED POINT DIVISION ALGORITHMS

D. Kumar, P. Saha and A. Dandapat

National Institute of Technology Meghalaya

Shillong, India 793003

Emails: deepak.enc@gmail.com, sahaprabir1@gmail.com, anup.dandapat@nitm.ac.in

 Submitted: May 28, 2017 Accepted: July 24, 2017 Published: Sep. 1, 2017

Abstract- This paper describes the hardware implementation methodologies of fixed point binary

division algorithms. The implementations have been extended for the execution of the reciprocal of the

binary numbers. Radix-2 (binary) implementations of digit recurrence and multiplicative based

methods have been considered for comparison. Functionality of the algorithms have been verified in

Verilog hardware description language (HDL) and synthesized in Xilinx ISE 8.2i targeting the device

xc4vlx15-12sf363 of Virtex4 family. Implementation was done for both signed and unsigned number

systems, having bit width of operands vary as an exponential function of ��, where �=2 to 5.

Performance parameters have been calculated in terms of clock frequency, FPGA slice utilization,

latency and power consumption. Implementation results indicate that multiplicative based algorithm is

superior in terms of latency, while digit recurrence algorithms are consuming low power along-with

less area overhead.

Index terms: Digit recurrence, Division algorithm, Fixed point, FPGA, Newton-Raphson, Verilog.

630

D. Kumar, P. Saha and A. Dandapat, HARDWARE IMPLEMENTATION OF METHODOLOGIES OF FIXED POINT
DIVISION ALGORITHMS

I. INTRODUCTION

Binary division is the most complicated computation technique among other arithmetic

operations [1]. Substantial algorithms and the implementation methods so far have been proposed

to execute this operation like digit recurrence method [2-5], the multiplicative method [1, 6-10],

approximation methods [6], and special methods such as the COordinate Rotation DIgital

Computer (CORDIC) [6].

Digit-recurrence algorithm produces a single quotient bit in each iteration [3], through

add/subtract operation of multiple of divisor from the dividend /partial remainder [6]. Simplicity

of the implementation and availability of the exact remainder are the main advantages of digit

recurrence algorithm whereas convergence rate is linear with operand size. However, the same

method can be adopted to get the fractional quotient in fixed point format by omitting the

remainder.

Newton-Raphson (N-R) and Goldschmidt (GdS) methods are common examples for

multiplicative division [8]. Divisions based on multiplicative implementation has a common

factor of quadratic convergence (i.e. each iteration successively produces double of accurate bits)

[8]. Self-correcting nature (i.e. generated error in each iteration does not reflect to the next) is the

key strength of N-R method although two dependent multiplications limit the performance of

such algorithm. Due to the dependency, multiplication cannot be computed in parallel. However,

in GdS algorithm multiplication can be implemented in a parallel manner but lacks self-

correcting nature. Both the algorithms (N-R and GdS) require efficient fixed point multiplication

technique to achieve the high speed operation, and also the initial approximation to reduce the

number of iterations [10]. Reciprocal computation can be treated as a special type of division

where dividend has a fixed value of 1. This reciprocal unit plays a pivotal role for the

implementation of N-R algorithm.

Though division is an infrequent operation but it has lots of application in common fields like

digital signal processing, computer graphics and image processing [11] and in some specific

fields like in robotics to calculate position and orientation values [12-13], in sensor networks to

631

INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS VOL. 10, NO.3, SEPTEMBER 2017

find the different functions such as node’s wakening probability, morphactin concentration and

probability density[14-15], and in image compression to estimate the value of transfer function of

wiener filter[16]. Now a days, high speed along with high clock frequency with less chip area is

desirable for most of the system application. Although, some digital instrumentation like

tachometer requires low cost, medium speed with limited accuracy [17]. Thereby, the

implementation comparisons among the algorithms are required for further utilizations in

application specific integrated circuit (ASIC).

In this paper, fixed point signed and unsigned number division has been implemented based on

digit recurrence and multiplicative division algorithms. Also, the work has been extended for the

implementation of reciprocal of a number using the same methodology. Restoring and non-

restoring division algorithms have been adopted from digit recurrence group. Moreover, N-R and

GdS algorithms have been taken from multiplicative division group. All the mentioned

algorithms have been analyzed for different operands length. Functionality of each algorithm

have been verified in Verilog HDL and synthesized in Xilinx ISE 8.2i for the device xc4vlx15-

12sf363 of Virtex4 family. Performance parameters have been calculated in terms of clock

frequency, FPGA slice utilization, latency and power consumption. Implemented results show

that Goldschmidt algorithm has the lowest latency among others, while digit recurrence

(restoring and non-restoring) algorithms are consuming low power along-with less area overhead

for both division and reciprocal operations.

II. BACKGROUND THEORY

Dividend (dvd) and divisor (dvr) are the operands of a division operation and results are quotient

(q) and remainder (rem). The rem is an optional term of the division operation based on design

aspect. All the operands and results have been considered as N − bit binary number and have the

mathematical representation as [18] :

dvd = � dvd�2
�

���

�� �

632

D. Kumar, P. Saha and A. Dandapat, HARDWARE IMPLEMENTATION OF METHODOLOGIES OF FIXED POINT
DIVISION ALGORITHMS

dvr = � dvr�2
�

���

�� �

q = � q�2
�

���

�� �

rem = � rem�2
�

���

�� �

a. Unsigned Division

Division operation for unsigned can be written as [6]:

dvd = q × dvr+ rem (1)

and

rem < ��� (2)

b. Signed Division

In case of unsigned number system the equation (1, 2) is adequate, where as for signed number

system the equation (2) can be written as

|rem|< |dvr| and sign(rem)= sign(dvd) (3)

c. Fixed-point Division

To implement the fixed point division operation, equation (1) can be re-written as

dvd = q × dvr (4)

Where dvd and dvr are same as above mentioned N − bit array. However, the quotient can be

redefined as

q = � q�2
�

���

�� ��

Assuming q = q���,q��� ,… q�,q� . q��,q��,… q��

i.e. q is a 2N-bit binary number having N-bit whole (integer) part and N-bit fractional part

implied dot (.) at position N.

633

INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS VOL. 10, NO.3, SEPTEMBER 2017

III. IMPLEMENTATION

The In this section, implementation of the above mentioned division methodology has been

described. Some of the symbolic notation used in following flow charts are as follows: '0'/ '1'

represents a single binary bit, ~ stands for bit-wise negation operation, an N- bit register R is

represented as R[N-1:0] and XOR for Exclusive-OR operation.

a. Restoring Division Algorithm

Figure.1. Restoring division for signed binary number (RST_S)

634

D. Kumar, P. Saha and A. Dandapat, HARDWARE IMPLEMENTATION OF METHODOLOGIES OF FIXED POINT
DIVISION ALGORITHMS

Flowchart diagram for signed restoring division (RST_S) is shown in Fig.1. Although original

unsigned (RST_U) restoring division method does not support signed operands directly, it can be

modified for the signed number. The modified implementation procedure is shown in Fig.1.

b. Non-restoring Division Algorithm

Figure 2. Non-restoring division for signed binary number (NRT_S)

Non-restoring division method has inherent support for signed number system if signed binary {-

1, 1} is used to represent the quotient bits. To implement the signed number division (NRT_S),

the operands have to be presented in 2’s complement format. The implementation procedure is

shown in Fig.2. During this implementation generated quotient bit {-1, 1} is encoded as {0, 1}

respectively. Further signed binary result i.e. Q converted to 2’ complement binary by using

635

INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS VOL. 10, NO.3, SEPTEMBER 2017

standard method given in [19-23]. Non-restoring division method for unsigned numbers

(NRT_U) can be carried out by the same flow chart (Fig.2), where the chosen quotient bits

should be taken as conventional binary number system i.e. {0, 1}.

c. Newton-Raphson Division Algorithm

Figure 3. Newton-Raphson division for signed binary number (N-R_S)

To implement the division by Newton–Raphson method, reciprocal (� ≅ 1/���) of divisor

(���) is estimated using Newton's method. Finally quotient (�) is obtained by the

multiplication of estimated reciprocal with dividend(���). To implement the reciprocal via

636

D. Kumar, P. Saha and A. Dandapat, HARDWARE IMPLEMENTATION OF METHODOLOGIES OF FIXED POINT
DIVISION ALGORITHMS

Newton’s method, reciprocal function is approximated [6, 19] and shown in equation (5).

���� = �� × (2 − �� × ���) (5)

The above recurrence can be initiated with possible initial approximation [6, 19]

 �� = � − � × ��� (6)

Where � and � are constants. The chosen values are 2.9282 and 2 respectively assuming
�

�
 ≤

��� < 1. To hold this condition, both ��� and ��� can be shifted left. The flowchart diagram

for signed implementation (N-R_S) is shown in Fig.3. Unsigned number division can be

implemented through similar approach ignoring the sign handling steps.

d. Goldschmidt Division Algorithm

Basic idea behind the Goldschmidt division algorithms is as follows: multiply both the ��� and

��� by carefully chosen common factor �� such that the dividend converges to quotient while

divisor converges to 1 i.e.

� =
���

���
=

���

���

��

��

��

��
…

��

��
… (7)

Under the assumption that
�

�
 ≤ ��� < 1, common factor can be selected as �� = 2 − ���� with

���� = ���, and using the following recursive equation[19]

������

������
=

����

����

��

��
 (8)

Fig.4 shows the flow chart diagram for signed numbers division through Goldschmidt algorithm

(GdS_S). Same diagram can be used for unsigned division (GdS_U) by ignoring the steps for

sign handling.

637

INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS VOL. 10, NO.3, SEPTEMBER 2017

Figure 4. Goldschmidt division for signed binary number (GdS_S)

IV. RESULTS AND DISCUSSIONS

The functionality of above mentioned algorithms (for both signed and unsigned operands) have

been implemented and verified in Verilog hardware description language (HDL). All the

algorithms have been taken from different references and simulated in the same environment for

comparison purpose. All the designs have been synthesized through Xilinx ISE 8.2i targeting the

device xc4vlx15-12sf363. Performance parameters in terms of clock frequency, slice utilization

638

D. Kumar, P. Saha and A. Dandapat, HARDWARE IMPLEMENTATION OF METHODOLOGIES OF FIXED POINT
DIVISION ALGORITHMS

Table 1(a): Clock frequency (MHz) analysis of different implementation for division

Bit-length

Algorithm

4 8 16 32

RST_U 288.317 288.317 261.491 219.651

RST_S 288.317 269.452 257.170 215.545

NRT_U 288.317 288.317 286.676 217.042

NRT_S 261.209 253.949 254.729 221.205

N-R_U 202.286 187.949 49.117 38.261

N-R_S 196.07 179.01 49.098 38.242

GdS_U 132.371 117.835 67.932 56.718

GdS_S 132.954 115.030 67.897 56.721

Table 1(b): Slice utilization report of different implementation for division

 Bit-length

Algorithm

4 8 16 32

RST_U 54 72 106 173

RST_S 60 92 159 293

NRT_U 54 65 91 140

NRT_S 56 74 109 126

N-R_U 78 83 182 1585

N-R_S 105 129 235 1660

GdS_U 87 122 199 471

GdS_S 96 140 253 582

(area), latency and power have been analyzed for different bit lengths. Analysis of clock

frequency (MHz) and slice utilization are shown in Table 1(a) and Table 1(b) respectively while

latency and power consumption analysis are shown in Fig.5(a) and Fig.5(b) respectively for

division operation. From these analysis, it has been observed that, for 32-bits operands,

639

INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS VOL. 10, NO.3, SEPTEMBER 2017

Goldschmidt algorithm is superior in terms of latency among others, while digit recurrence

(restoring and non-restoring) algorithms are consuming low power along-with less area overhead.

Beside division, the designs have been extended for the implementation of reciprocal operation.

Similar performance parameters have been calculated and shown in Table 2(a), Table 2(b),

Fig.6(a) and Fig.6(b).

Figure 5(a). Latency (nS) of different implementation for division

Figure 5(b). Power (mW) analysis of different implementation for division

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

4 8 16 32

La
te

n
cy

 (
n

S)

Bit Length

RST_U

RST_S

NRT_U

NRT_S

N-R_U

N-R_S

GdS_U

GdS_S

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

4 8 16 32

P
o

w
e

r
(m

W
)

Bit Length

RST_U

RST_S

NRT_U

NRT_S

N-R_U

N-R_S

GdS_U

GdS_S

640

D. Kumar, P. Saha and A. Dandapat, HARDWARE IMPLEMENTATION OF METHODOLOGIES OF FIXED POINT
DIVISION ALGORITHMS

Table 2(a): Clock frequency (MHz) analysis of different implementation for reciprocal

 Bit-length

Algorithm

4 8 16 32

RST_U 288.317 288.317 261.491 223.968

RST_S 288.317 288.317 258.451 215.545

NRT_U 288.317 288.317 286.676 217.042

NRT_S 288.317 250.890 251.653 221.205

N-R_U 95.617 79.008 49.152 33.242

N-R_S 95.617 78.759 49.152 33.181

GdS_U 132.954 115.030 67.932 56.718

GdS_S 132.954 117.489 67.676 56.567

Table 2(b): Slice utilization report of different implementation for reciprocal

 Bit-length

Algorithm

4 8 16 32

RST_U 53 69 99 160

RST_S 54 74 122 205

NRT_U 53 62 84 127

NRT_S 57 71 102 125

N-R_U 88 92 136 309

N-R_S 89 95 156 353

GdS_U 87 120 193 459

GdS_S 93 134 236 549

V. CONCLUSIONS

In this paper digit recurrence and multiplicative based division methods have been analyzed for

both signed and unsigned, fixed point operands. Implementation has been carried out and

641

INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS VOL. 10, NO.3, SEPTEMBER 2017

Figure 6(a). Latency (nS) of different implementation for reciprocal

Figure 6(b). Power (mW) analysis of different implementation for reciprocal

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

4 8 16 32

La
te

n
cy

 (
n

S)

Bit Length

RST_U

RST_S

NRT_U

NRT_S

N-R_U

N-R_S

GdS_U

GdS_S

0.00

5.00

10.00

15.00

20.00

25.00

30.00

4 8 16 32

P
o

w
e

r
(m

W
)

Bit Length

RST_U

RST_S

NRT_U

NRT_S

N-R_U

N-R_S

GdS_U

GdS_S

642

D. Kumar, P. Saha and A. Dandapat, HARDWARE IMPLEMENTATION OF METHODOLOGIES OF FIXED POINT
DIVISION ALGORITHMS

performance parameters have been calculated for further utilization of division and reciprocal

circuitry. Functionality of the algorithms has been verified in Verilog HDL and synthesized.

Clock frequency, slice utilization, latency and power consumption have been measured for

different bit lengths. Implementation results show that multiplicative based algorithm particularly

Goldschmidt is superior in terms of latency, while digit recurrence (non-restoring) algorithm

requires low power along-with less area overhead.

REFERENCES

[1] D. W. Matula, M. T. Panu and J. Y. Zhang, "Multiplicative Division Employing Independent

Factors," IEEE Transactions on Computers, vol. 64, no. 7, pp. 2012-2019, July 2015.

[2] M. D. Ercegovac and J. M. Muller, "Variable radix real and complex digit-recurrence

division," IEEE International Conference on Application-Specific Systems, Architecture

Processors (ASAP'05), 2005, pp. 316-321.

[3] E. Antelo, T. Lang, P. Montuschi and A. Nannarelli, "Digit-recurrence dividers with reduced

logical depth," in IEEE Transactions on Computers, vol. 54, no. 7, pp. 837-851, July 2005.

doi: 10.1109/TC.2005.115

[4] J. Ebergen, I. Sutherland and A. Chakraborty, "New division algorithms by digit

recurrence," Conference Record of the Thirty-Eighth Asilomar Conference on Signals,

Systems and Computers, 2004, pp. 1849-1855 Vol.2.

[5] E. Antelo, T. Lang, P. Montuschi and A. Nannarelli, "Low latency digit-recurrence reciprocal

and square-root reciprocal algorithm and architecture," 17th IEEE Symposium on Computer

Arithmetic (ARITH'05), 2005, pp. 147-154.

[6] M. D. Ercegovac and T. Lang, “Digital Arithmetic”, Morgan Kaufmann publishers, New

York, 2004.

643

INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS VOL. 10, NO.3, SEPTEMBER 2017

[7] R. Goldberg, G. Even and P. M. Seidel, "An FPGA implementation of pipelined

multiplicative division with IEEE Rounding," 15th Annual IEEE Symposium on Field-

Programmable Custom Computing Machines (FCCM 2007), Napa, CA, 2007, pp. 185-196.

[8] N. Kikkeri and P. M. Seidel, "Formal verification of parametric multiplicative division

implementations," 2005 International Conference on Computer Design, 2005, pp. 599-602.

[9] G. Even and P. M. Seidel, "Pipelined multiplicative division with IEEE

rounding," Proceedings 21st International Conference on Computer Design, 2003, pp. 240-

245.

[10] M. Ito, N. Takagi and S. Yajima, "Efficient initial approximation for multiplicative

division and square root by a multiplication with operand modification," in IEEE

Transactions on Computers, vol. 46, no. 4, pp. 495-498, Apr 1997.

[11] B. Jovanovic, R. Jevtic and C. Carreras, "Binary Division Power Models for High-Level

Power Estimation of FPGA-Based DSP Circuits," IEEE Transactions on Industrial

Informatics, vol. 10, no. 1, pp. 393-398, Feb. 2014.

[12] Z. Liang and H. Gao, "Formation Algorithms for Multiple Mobile Robots Based on

Vision Detection", International Journal on Smart sensing and Intelligent Systems, vol. 9, no.

4, pp. 1840-1858, December 2016.

[13] W. Xiong, "Structural Design and Motion Analysis of Universal Mobile Quadruped

Robot", International Journal on Smart sensing and Intelligent Systems, vol. 9, no. 3, pp.

1305-1322, September 2016.

[14] Y. Qin and H. Ying, "PGSA-Based Localization Algorithm for Wireless Sensor

Network", International Journal on Smart sensing and Intelligent Systems, vol. 9, no. 3, pp.

1287-1304, September 2016.

[15] Z. Ju-Wei, W. Yu and W. Ya-le, "A Deployment Algorithm of Heterogeneous

Underwater Sensor Network Based on Acoustic and Magnetic Joint Sensing Model",

International Journal on Smart sensing and Intelligent Systems, vol. 9, no. 4, pp. 2149-2166,

December 2016.

[16] Q. Zhou and X. Liu, "A Blind Assessment Method of Image Compression Quality Based

on Image Variance", International Journal on Smart sensing and Intelligent Systems, vol. 9,

no. 4, pp. 2131-2148, December 2016.

644

D. Kumar, P. Saha and A. Dandapat, HARDWARE IMPLEMENTATION OF METHODOLOGIES OF FIXED POINT
DIVISION ALGORITHMS

[17] J. C. Majithia, T. J. Koehler and W. Banks, "A Low-Cost Binary Division Circuit for

Digital Instrumentation," IEEE Transactions on Instrumentation and Measurement, vol. 23,

no. 1, pp. 32-35, March 1974.

[18] M. D. Ercegovac and T. Lang, "Division with limited precision primitive operations,"

Proceedings of Thirty-Fifth Asilomar Conference on Signals, Systems and Computers, 2001,

pp. 841-845.

[19] B. Parhami, "Computer Arithmetic: Algorithms and hardware design", Oxford university

press, New York, 2000.

[20] K. Jun and E. E. Swartzlander, "Improved non-restoring division algorithm with dual path

calculation," IEEE 56th International Midwest Symposium on Circuits and Systems

(MWSCAS), Columbus, OH, 2013, pp. 1379-1382.

[21] K. Jun and E. E. Swartzlander, "Modified non-restoring division algorithm with improved

delay profile and error correction," Conference Record of the Forty Sixth Asilomar

Conference on Signals, Systems and Computers (ASILOMAR), Pacific Grove, CA, 2012, pp.

1460-1464.

[22] M. E. Isenkul, "A comparative performance analysis for the computer arithmetic based

fast division algorithms," 24th Signal Processing and Communication Application

Conference (SIU), Zonguldak, 2016, pp. 629-632.

[23] P. Krishnamoorthy and R. Tekumalla, "Quotient prediction for low power division," IEEE

International SOC Conference, Erlangen, 2013, pp. 273-277. doi:

10.1109/SOCC.2013.6749700

645

