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I. INTRODUCTION 

 

Sensors bridge the gap between environment under test/observation and the actual measurement.  

They constitute the most important part of outputs of interest in the environment. Inaccurate and 

improperly used sensor readings will result in problematic determination and inappropriate 

subsequent estimation of agent state and decisions in the environment [1]. 

A generalized data fusion combines data of multiple sources in order to achieve inferences. For 

instance, while a fighter is unable to see around corners or through a tree-dense area [2], 

additional senses can provide advanced alarm. Similarly, it may not be possible to determine the 

quality of one kind of food based merely on the sense of taste, but edibility may be arrived at 

using a combination of vision and smell. Multi-sensor data fusion is naturally performed by 

animals and humans to gain more accurate evaluation of the surroundings and especially 

identifying threats, where the objective is increasing their chances of survival [3]. 

Measurement data may be merged (fused) at different levels, at observation level; and at the 

decision level. Raw sensor data can be directly combined by similarity if the sensor data are 

homogenous [3]. There also has been increasing interest in making distributed sensor-based 

security systems. It is essential to understand how moving objects interact with each other and the 

environment to extract the major parameters for the development of automated situational 

awareness system [4]. In addition to the issue of automated situational awareness, privacy 

protection is another important issue in surveillance. It is very desirable for a surveillance system 

to recognize human activities.  

Successful implementations of many commercial and military applications require timely, 

reliable, and precise information to support decisions for remote security operations. Developing 

effective security monitoring mechanisms to provide situation awareness has become an 

increasingly important focus. Thus, relying on raw senor data is extremely challenging primarily 

because security events evolve continuously and security space information is usually incomplete 

and noisy. Some dynamic security monitoring systems combine a number of different techniques 

to data collected from distributed sensors like intrusion detection based on fusing decisions and 

information correlation to compute event indicators [5]. 

This paper presents a methodology for multi-sensor based analysis of a surrounding of a highly 

valuable asset. This is an essential part of a decision making system of a security system [6]. 
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Multi-Sensor based networks are an emerging technology that promises ability to monitor the 

physical world. The aim of the work in this paper is to be able to estimate (predict) the next 

security status of a moving object (agent) in an indoor monitored space and be able to make a 

decision on the system status at any given time t. 

 

II. SENSOR TYPES 

 

This proposed system utilizes three types of sensors to accomplish its goal. Sonar sensor [7] to 

scan space for total number of moving agents, laser sensor [8, 9] to measure speed of agent  and 

finally radio frequency sensor [10, 11] to provide the system with agent identification.  

Sonar sensors are mainly categorized into propagation and distance types. The LV MaxSonar-

EZ0 [7] is one type of those sensors that can be utilized for such application capable to cover up 

to 645.16 centimeters of distance and makes a reading every 50msec and its cone diameter is 

wide enough to completely cover the floor part of the area of interest. This set of sensors is 

responsible to report the total number of the existing agents in the area under surveillance. 

On the other side laser sensors [8, 9] are also grouped under two major types that are 

displacement and position.  The CSI-430 [8] sensor is capable to capture moving agent’s speed 

up to 9.144 meters away and it provides the system with resolution feedback with a reading that 

is 5 digits. 

Finally, Radio Frequency sensors [10, 11] utilize radio waves propagation to transfer data. 

The Tag-it HF-I [10] sensor set that is equipped with 13.56 MHZ transponders could be used to 

acquire and report the access right of any agent that enters the space of interest. 

 

III. A MONITORING SYSTEM 

In a target monitoring applications; multi-sensor data usually transferred to measurements of 

angular direction and range which in turn fed into a predictor to estimate the target’s next 

position and velocity (system states) utilizing observations from different attributes and analyzing 

the motion type of the target with respect to a reference point, helps in making a decision of the 

intent of the target (e.g., flag and alarm or no-flag needed). The determination of the target’s next 

position and velocity from a noisy time-series of sensor data forms a typical estimation problem 

where Kalman filtering techniques fits better [3]. 
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This paper proposes a new monitoring system model utilized to predict the next state of moving 

agent(s) in a closed space as in Fig.1 by fusing information from multiple sensors of different 

types. 

The area under surveillance is divided into four zones A, B, C and D shown in Fig.1 where each 

is only a ring with a width that is wide enough to be completely covered by the sonar sensor’s 

cone’s diameter. This sensor could be mounted in the middle of the ceiling of each ring and 

rotating at a fixed scanning speed to cover the whole ring and be able to provide a total number of 

agents at any given time in any zone [6, 7]. As shown in Fig.2 the model also reads in data from a 

grid of laser sensors [6, 8, 9] to capture agent speed. The following laser sensor network was 

assumed; four sensors in the X direction and another set of four laser sensors in the Y direction 

with each of them reporting the agent(s) speed in feet per second as in Fig.2. 

Finally an identification data transmitter is associated with each agent and captured by RF Radio 

Frequency sensor [10, 11] to support the system with an ID of any moving agent. For sake of 

simplicity, radio frequency sensor will provide three pre-defined types of agent’s access rights 

(“Trusted”, “Semi-Trusted” and “Unknown”). Laser and sonar sensor data sets will then be fed 

into a sensor similarity processing sub-system that will be responsible to filter out any noisy 

sensor input of each sensor-type and come up with a single reading based on sensor similarity 

method. After sensor data have been filtered, speed on X-axis and Y-axis outputs will be 

processed in a state estimation and transformation. 

 
Figure 1. Security monitoring system space with the red circle denotes the valuable asset. 
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Figure 2. Agent speed captured on X and Y direction. 

Finally sensor complementarity stage starts where sensor data fusion/complementarity is 

performed using type-2 fuzzy logic inference system to produce a suspiciousness decision for 

each moving agent as shown in Fig.3. 

 

 
Figure 3. Security System Block Diagram. 

 

IV.  SENSOR SIMILARITY AND SELECTION 

Considering raw sensor measurements directly into sensor fusion may affect quality of fusion 

which leads to making wrong decisions in some cases where these measurements contain noisy 

and inaccurate data.  Thus, pre-processing of these sensors plays an important role in sensor 

fusion. Only reliable subsets of the sensors are needed; subsets that are consistent and accurate. 

In our proposed system data is collected from a total of eight different laser sensors mounted on 

the X-axis and on the Y-axis (four sensors on each axis) with each sensor having different 

standard deviation and mean. This paper proposes a new method of sensor similarity that utilizes 
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the concepts of relative closeness of sensors with respect to each other. Over all mechanism of 

sensor similarity is summarized in Fig.4. 

Sensors closeness in measurement between sensors is defined as the distance of sensor “j” with 

respect to other sensors on the same axis to be: 
2( ( ) ) /j pos mean jd Max j GA σ= −   (1) 

where GAmean is the Global Arithmetic mean of all sensors (on a given axis) and  Max(j)pos is the 

best estimate of the true state of sensor “j” for data collected over one second time span sensor 

readings that are closest to the true state and defined as: 

 ( ) [ ( )]jposMax j Max Posteriori x=       (2) 

where Posteriori of jth sensor’s reading given the observation xj is P(sj|xj). 

 
Figure 4. Flow chart shows how sensor similarity is performed. 

a. Iterative Bayes estimate and Maximum Posteriori 
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In this estimate the posterior of the different sensors was obtained based on Bayes formula: 

( | ) ( )( | )
( )

p x s p sp s x
p x

=   (3) 

Where “s” is the state and “x” is the observation. The probability of “s” given the observation 

“x”; the observation drawn from normal distribution N(µ, 2) where µ is the mean and  

standard deviation, so the mean of the likelihood function is the state under consideration which 

is represented as: 
2

2
( )( )
21( | )

2

x s

p x s e σ

σ π

− −

=   (4) 

and: 
2

2
( )( )
21( )

2

x

p x e
µ

σ

σ π

− −

=   (5) 

The only unknown term left in Bayes is P(x). We know that: 

 ( | ) 1p s x =∑     (6) 

so: 

 ( | ) ( ) 1
( )

p x s p s
p x

=∑    (7) 

then: 

( ) ( | ) ( )p x p x s p s=∑   (8) 

The right side of equation (8) is computed for all observations and then divide by the total sum of 

these values to compute P(x|s). This process was made iterative as more observations arrive by 

setting the priori Pr(i+1) = Posteriori of the previous observation Po(i) and the maximum 

posteriori is pulled out at each iteration. 

 

b. Global and Local Arithmetic Means 
 

In this paper, the LAmean is defined to be the Local Arithmetic Mean [12] for each sensor over its 

k observations and defined as: 

 
1

(1/ ) k
mean ii

LA k x
=

= ∑   (9) 
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and GAmean in equation (1) to be the mean of all sensor local arithmetic means that is defined as 

follows: 
4

1 meann
mean

LA
GA

n
== ∑       (10) 

where n: is the number of used sensors for an axis (n  = 4 in our example) and finally,  in 

equation (1) refers to the standard deviation of the sensor “j” given the fact that each sensor has 

a different mean and standard deviation. 

After each sensor’s dj is calculated it is compared to a pre-defined threshold distance dth to 

determine if the reading of this sensor should be rejected or considered which constitutes the part 

of sensor selection. In this paper we assume threshold dth is concluded from a previously 

conducted calibration of the sensor network. 

If the sensor’s reading is considered then it is factored in when calculating the overall average of 

all considered readings: 

1 i

n
meani

average

LA
Total

n
== ∑   (11) 

where “n” here is the total number of accepted sensors. 

Finally, a single reading as a similarity output is obtained. This algorithm of similarity is applied 

to laser sensors on both X axis and Y axis, and to the sonar sensors as well. 

 

V. STATE ESTIMATION AND TRANSFORMATION 

 

a. Kalman Filter 

The method of Kalman filtering is a widely utilized for filtering sensor measurement data and for 

sensor data fusion as well [13]. 

Kalman filter uses measurements that are observed over time that contain noise, and produces 

values that tend to be closer to the true values of the measurements and their associated 

calculated values. The Kalman filter is a set of mathematical equations that provides an efficient 

computational (recursive) means to estimate the state of a process, in a way that minimizes the 

mean of the squared error. Kalman filtering is an ongoing cycle of time updating that projects the 

current state estimate ahead in time and the measurement updating that adjusts the projected 
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estimate by an actual measurement at that time. The equations for those two updates are 

presented below [14]: 

The first step is the Prediction (Discrete KF time update): 

(1) Project the state ahead: 

           (12) 

Where xk is the state vector (agent’s position and velocity), Ak is the state transition model that is 

applied to the previous state xk-1, Bk is the control input model that is applied to the control vector 

uk and wk is the process noise that is assumed to be drawn from a zero mean normal distribution 

with covariance Q. 

    ( ) ~ (0, )p w N Q    (13) 

(2) Project the error covariance ahead: 

    1
T

k k k kP A P A Q−
−= +    (14) 

The second step is the Update (Discrete KF measurement update): 

(1) Compute the KF gain: 
1( )T T

k k kK P H HP H R− − −= +   (15) 

Where H is the measurement vector of the measurement zk of the true state space: 

k k k kz H x v= +    (16) 

vk is the measurement noise that is assumed to be drawn from a zero mean normal distribution 

with covariance R. 

(2) Update estimate with measurement zk : 

    ˆ ˆ ˆ( )k k k k kx x K z Hx− −= + −   (17) 

(3) Update the error covariance: 

    (1 )k k kP K H P−= −    (18) 

For application purposes, estimates of the agent’s position on the X and the Y axes of the space 

are needed. Kalman Filter was chosen to accomplish this task. 

A system state was defined in this case to be the position and the speed.    

  

    _x averageV X Total=              (19) 

    _y averageV Y Total=             (20) 

kkkkkk wuBxAx ++= −1ˆˆ
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where the agent’s speed at the X-axis is the final X_Totalaverage that was arrived at. After 

collecting agent’s data on X axis and deriving its corresponding position data as (same applies for 

the Y axis): 

   * _x averageP t X Total=         (21) 

   * _y averageP t Y Total=          (22) 

Where, t is the time. 

Kalman filter was applied on our system to estimate agent’s next position.  

b. State Transformation (Homogeneous Sensor Complementarity) 

Multi-sensor complementarity is the synergistic use of the information provided by different 

sensory devices to assist in the accomplishment of a system task. 

It refers to any stage in the integration process where there is an actual combination of different 

sources of sensory information into one sensory representation [15]. Sensor complementarities or 

correlation is especially advantageous when heterogeneous sensors are employed because of the 

potential to aggregate different views of the same incident. 

For our application we are interested in the distance of an agent (DoA) from the valuable asset 

under surveillance; thus a transfer of the system state (agent’s position on X and Y axes) to 

another form is needed where it describes the agent’s distance with respect to asset. Since the 

agent could be moving in any direction in the space (its motion angle from asset will always 

change) we are always interested in that continuously changing distance. Therefore, we need to 

transform the X and Y to r and θ (Cartesian to polar). This is defined as homogeneous sensor 

complementarity as the system used reading from multiple sensors of the same type (speed on X 

and speed on Y). However, the system will only utilize the r (radial distance) part of that 

information then DoA is easily calculated to be R-r; where R is the radius of the largest circle 

where the agent is first detected by the sensors (Fig.1). 

 

VI. DECISION MAKING/TYPE-2 FUZZY (HETREGONEOUS SENSOR 

COMPLIMENTARITY) 

 

The last part of this proposed system is the security decision making which utilizes the previous 

sub-system output to make a decision using an interval type-2 fuzzy system since it is suitable to 

make a precise decision in uncertain circumstances. 
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a. Interval Type-2 Fuzzy Inference System 

Unlike a type-1 set where the membership grade is a crisp value in [0, 1], a type-2 fuzzy set 

shown in Fig.5 is characterized by a fuzzy membership function, where the membership of each 

point of this set is a fuzzy set in [0, 1] [16]. 

An Interval type-2 fuzzy set makes room for non-deterministic truth degree and uncertainty [17, 

18] (foot print of uncertainty FOU shown in Fig.5) for an element that belongs to a set. A type-2 

fuzzy set denoted by, , is characterized by a type-2 membership function , µÃ(x,u), where x X, 

u   [0,1] and 0 ≤ µÃ(x,u) ≤ 1. 

    



( ) {( , ( )) | }AA x x x Xµ= ∈   (23) 

 


( ) {( , , ( , )) | , [0,1]}u
xAA x u x u x X u Jµ= ∀ ∈ ∀ ∈ ⊆   (24) 

It is the bounded area in Fig.5 and mathematically it is the union of the upper and lower 

membership functions [15, 19], where the upper and lower memberships are Gaussian functions: 



2( ( )) ( , ; )Upper FOU A N m xσ=  (25) 



1( ( )) ( , ; )Lower FOU A N m xσ=  (26) 

Where; 1 and 2 are the standard deviations for lower and upper membership functions 

respectively and m is the mean of both. 

 
Figure 5. A Foot print of uncertainty of a sample interval type-2 Gaussian membership function. 

 
b. Heterogeneous Sensor Complementarity 
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In this paper a decision making sub-system (an interval type-2 fuzzy logic system) is defined to 

be the heterogeneous sensor [19] complementarity as it reads in three different sensor data types 

and generates a fourth type of data that is totally different from the input ones. It is heterogeneous 

because it will generate a percentage output (percentage data type output) based on the number of 

agents (NoA that is different data type) and their relative distances from the valuable asset at any 

given time, the distance of agents (DoA that is a different data type) and finally, the agent’s 

access rights (That is also different data type input).  

The first input which is the “Number of Agents” (NoA) is considered an input with four different 

fuzzy ranges.  Ranges are “Low” indicating the total number of objects is in the low scale of the 

alarming system, a “Medium Low” is the next level up, “Medium High” is the second highest 

level and finally “High” is the highest possible level. The second input is DoAf that is generated 

as: 

                   *fDoA DoA f=                      (27) 

Where (DoA) “Distance of Agent” from the asset in feet. DoA is categorized into four different 

fuzzy categories, “Agent is extremely close”, “Agent is very close”, “Agent is close” and “Agent 

is far” (Fig.1). Also, where “f” is a multiplication factor that is based on the “Access Rights” of 

any moving agent and defined to be twenty for a “Trusted” (denoted by “T”), ten for “Semi-

Trusted” (denoted by “ST”) and finally a one for an “Unknown” agent (denoted by “U”). Fig. 6 

shows the type-2 fuzzy logic membership functions for both Number of Agents and Distance of 

Agents.  
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Figure 6. Interval type-2 Trepazoid Membership functions  for NoA and DoA respectively. 

 

This was accomplished by setting a set of fuzzy inference system (FIS) rules (Fig. 7). Below is a 

sample of such rules: 

If “Number of Agents” (NoA) is High and “Distance of Agent” (DoA) is Extremely Close  

Then 

“Degree of Suspiciousness” (DoS) is Extremely Suspicious  

The proposed system has only one output which is the “Degree of suspiciousness” (DoS). This 

DoS is categorized into five levels of suspiciousness, “Not suspicious”, “Almost Suspicious”, 

“Suspicious”, “Very Suspicious”, and “Extremely suspicious” as shown in Fig.8 and is driven by 

the DoAf and NoA inputs [6, 20]. 
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Figure 7. Interval type-2 Decision Surface Generated by FIS Rules. 

 

 

 

 

Figure 8. System Suspiciousness levels 
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VII. RESULTS AND DISCUSSION 

In this paper a realistic simulation of several scenarios of agents moving linearly were 

investigated. Evaluation for a single agent is shown here. Assuming agent’s true speed is 3 

feet/sec on X-axis the grid of four sensors (each sensor is slightly different from the other in its 

mean and standard deviation) captured this speed over one second time frame. Fig.7 shows agent 

speed captured by four sensors. 

Sensor 1 of this group is assumed to be noisier with mean and standard deviation well distant 

from the other three. It was also assumed the agent’s true speed is 5 feet/sec on Y-axis, the grid of 

four sensors (each sensor is slightly different from the other in its mean and standard deviation) 

on this axis also captured this speed over same time interval that is 1 second Fig.8 shows this 

agent’s data on the Y-axis. Sensor 2 of this group is assumed to be the noisy sensor. 

Local Arithmetic means were next computed for each the four sensors on X-axis over for 

measurement over one second are shown in Fig.9 and Fig.10 shows their equivalents on the Y-

axis for the same time span. The next step in our sensor similarity is to compute the maximum 

posteriori for each of the X-axis sensors which is displayed in Fig.11 and compute those 

posteriori for the Y-axis as well as shown in Fig.12. After sensor similarity is applied for both 

sets of laser sensors (X and Y axes), a distance for each sensor was calculated and compared to a 

pre-defined threshold values that are 0.5 and 0.9 for X and Y respectively. 
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Figure 7. Speed data read by four Laser sensors on the X-axis of the sensor grid (where DLSM is 
Direction Laser Speed Measurement) and the number prefix refers to the sensor index in the grid. 
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Figure 8. Speed data read by four Laser sensors on the X-axis of the sensor grid (where DLSM is 
Direction Laser Speed Measurement) and the number prefix refers to the sensor index in the grid 
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Figure 9. Local arithmetic mean (LAmean) for the four sensors on the X-axis over 1 second time 
span 
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Figure 10. Local arithmetic mean (LAmean) for the four sensors on the Y-axis over 1 second 
time span 
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Figure 11. Max. Posteriori (Max(j)pos) for the four sensors on the X-axis over 1 second time 
span 

Those thresholds are assumed to be based on sensor calibration data for each axis. New global 

arithmetic mean (Totalaverage) was computed but based on only accepted sensors. Next Kalman 

filter was used to estimate agent’s next state (next accumulated distance) on both axes based on 

the X_Totalaverage and Y_Totalaverage that are shown in Fig.13 and Fig.14 respectively. 

State estimation (S.T.) that is the second to last block in our security system is then utilized to 

transform the distance data on (x, y) coordinates to (r, θ) polar coordinates (homogeneous sensor 

complementarity) as in Fig.15.  

Finally, a weighing is applied to this computed r (based on its access right that is chosen to be 1.3 

and 1.1 for “Trusted” and “Semi-Trusted” respectively and 1 for “Unknown”). Then it is fed to 

the decision making system to decide on its suspiciousness degree at any time during its 

movement shown in Fig.16. This figure displays evaluation two agents having the same speed 

values but different access rights (“Trusted” and “Unknown”).  
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Figure 12. Max. Posteriori (Max(j)pos) for the four sensors on the Y-axis over 1 second 
time span 

Fig.16 shows how the proposed security system was able to limit the DoS for the “Trusted” agent 
to less than 55%. However, it gave the “Unknown” agent almost a 65% for the same speed and 
distance accumulated values. It was shown that our system can actually use normal sensor data to 
filter it, estimate state, transform state and make a decision. 
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Figure 13. Agent position on X axis where “0” is the point where agent was first detected 
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Figure 14. Agent position on Y axis where “0” is the point where agent was first detected  
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Figure 15. Agent accumulated distance in polar coordinates 

 

Figure 16. Agent suspiciousness degree as it moves 
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VIII. CONCLUSION AND FUTRUE WORK 

 

Applying sensor similarity and complementarity (homogeneous and heterogeneous) concepts that 

are developed in this paper and helped improving the performance of a dynamic security 

monitoring system as they handled processing similar and different data types of multiple 

sensors. With Kalman filter and interval type-2 fuzzy inference help, the system was able to 

predict agent’s next position and report its security status. The proposed system exhibits 

promising performance in security monitoring and agent security status evaluation. 

One future system improvement is to introduce relationship between multiple agents. 
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