EFFECT OF ANNEALING ON GAS SENSING PERFORMANCE OF NANOSTRUCTURED ZnO THICK FILM RESISTORS

Sarika D. Shinde 1, G. E. Patil 1, D. D. Kajale 2, V. G. Wagh 3, V. B. Gaikwad 1 and G. H. Jain 1,*

1 Materials Research Lab., K.T.H.M. College, Nashik 422 002 India
2 Materials Research Lab., Arts, Commerce and Science College, Nandgaon 423 106 India
3 V. N. Naik, Arts, Commerce and Science College, Nashik 422 005 India
*Corresponding Author: gotanjain@rediffmail.com


Abstract- ZnO nano-particles have been synthesized by simple chemical route using a starting solution consisting of zinc acetate and citric acid as a surfactant agent. The structural properties of the prepared ZnO nano-particles annealed at different temperatures have been characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses. The XRD patterns show ZnO-wurtzite phase in the nano-powders, and size of crystals increases by increasing the annealing temperatures. The TEM images show nano-particles as clusters with size in the range of 10-20 nm. Electron diffraction pattern of nano-powders annealed at 900°C temperature shows a well distribution of spherical particles due to the effect of citric acid as surfactant in chemical process. Thick films prepared by screen printing technique from zinc oxide nano-powders annealed at different temperatures (500–900 °C), characterized by SEM analysis and tested for various gases. The film prepared from ZnO powder annealed at 700°C shows the higher sensitivity to H₂S gas for 10 ppm gas concentration.

Index terms: ZnO nano-particles, annealing, TEM, thick films, gas sensor.