INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS, VOL. 5, NO. 1, MARCH 2012

SYNTHESIS OF ZnO NANORODS BY HYDROTHERMAL METHOD FOR GAS SENSOR APPLICATIONS

Sarika D. Shinde¹, G. E. Patil², D. D. Kajale², D. V. Ahire¹, V. B. Gaikwad¹ and G. H. Jain^{1, *} ¹ Materials Research Lab., K.T.H.M. College, Nashik 422005 India ² Materials Research Lab., Arts, Commerce and Science College, Nandgaon 423106 India *Corresponding Author: gotanjain@rediffmail.com

Submitted: Jan. 2, 2012

Accepted: Feb. 2, 2012

Published: Mar. 1, 2012

Abstract- ZnO nanorods with different sizes and shapes have been successfully synthesized via a simple hydrothermal route, using zinc acetate and Cetyltriammonium bromide (CTAB) as the reactants. The thick films of as prepared ZnO were prepared by screen-printing technique in desired pattern. The films are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The gas sensing properties of the materials have been investigated for various interfering gases such as CO_2 , CO, Ethanol, NH_3 and H_2S etc at operating temperature from 30° (room temperature) to 300° C. The results indicate that the ZnO nanorod thick films showed much better sensitivity and stability than the conventional materials to H_2S gas at 30° C. The nanoshaped pillar can improve the sensitivity and selectivity of the sensors. ZnO nanorods are excellent potential candidates for gas sensors.

Index terms: Hydrothermal, CTAB, ZnO nanorods, H₂S gas sensor, gas response.