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Abstract- In this paper, a spatial-temporal collaborative sequential Monte Carlo architecture for mobile 

robot localization is designed to well suites intelligent environment for service robotic system. A 

proposed algorithm, namely Distributed Proportional Allocation-Augmented Particle Filter (DPA-

APF), resolves the sensor collaboration problem by the processes of augmented sampling, inter-node 

resampling, inner-node resampling and particle exchange. These procedures exploit data parallelism 

and pipelining of resampling operations and improve the scalability of distributed particle filters (PFs). 

Moreover, modified visual and laser sensor perception models are also addressed to guarantee reliable 

and accurate robot localization in dynamic scenarios that robot coexists with people. The proposed 

method is applied to a home-care robotic intelligent room with distributed smart nodes, and the 
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experimental results validate the effectiveness of the proposed method, which is hopeful to reduce the 

gap that exists between PF theory and their implementation using networked hardware. 

 

Index terms: spatial-temporal collaboration, mobile robot, particle filter, distributed sensor network, 

localization and navigation. 

 

I INTRODUCTION 

 

Dependable method to improve service quality for the elderly in care homes are a pressing 

need for the aging society[1]. Among these methods, robotic intelligent environment has been 

developed for supporting service mobile robot navigation and other manipulative tasks, such as 

Robotic Room[2], Intelligent Space [3], KDRS [4], Ubiquitous Robot [5], PEIS-Ecology [6] and 

so on. These types of system consist of robots and a number of smart devices (smart nodes), 

which are conceptually referred as sensor-actuator subsystem with rich sensing, computing 

capabilities and are able to interact with other nodes through network communications. The 

collaboration of distributed nodes to assist mobile robotôs limited sensing capability in solving 

the localization and navigation problem is a key issue. 

In the research field of intelligent environment, automatic and adaptive sensor selection 

methods have been proposed for distributed sensors[7] or multi-camera system[8]. In this paper, 

we consider the nature of the monitored mobile robot can be captured by a Markovian state-space 

model that involves potentially nonlinear dynamics, nonlinear observations, and non-Gaussian 

innovation and observation noises. Itôs natural to refer to the sequential Monte Carlo (SMC)[9], 

also known as Particle Filter (PF) method, which has shown promising advantages in addressing 

mobile robots probabilistic localization [10][11] and other state estimation tasks for these types 

of system. However, their application in real-time distributed systems is limited due to their 

inherent computational complexity.  

To solve this, there have been some efforts to design distributed particle filter methods. These 

methods are divided into centralized and decentralized structures. In the centralized structure 

category, particle generation and weight calculation are performed in parallel by distributed 

nodes and resampling is carried out by the central processing node. After the resampling, a 

considerable amount of samples are to be transferred from the central node to other nodes, which 

burdens the central nodeôs computation and communication load. In contrast, in the total 



decentralized structure category, inter-node communication amount is independent with the 

network scale, which guarantees the system scalability. Following the decentralized framework, 

Zhao [12] proposes a multisensory collaborative target tracking method. In this method, a leader 

node is selected according to the maximum expected effect value of nodesô estimation, and it 

maintains the targetôs belief distribution. Rosencrantz [13] proposes a decentralized particle filter 

for multi-robot multi-target tracking. In this method, a query based information sharing 

mechanism is proposed which can reduce the communication data between mobile robots. In the 

sensor network research society, distributed particle filters have also been developed [14][15][16], 

however, they have not yet been applied to the robot localization problem.  

It can be noticed that the difficulty of distributed implementation of SMC lies in several 

aspects. Firstly, since the SMC algorithms are substantially more computationally demanding 

than more parametric alternatives, it demands an efficient distributed framework to minimize the 

execution time of PF and reduce the computation load of all nodes. Secondly, sensor observation 

failure is commonly caused by occlusions and limited sensing coverage area in typical dynamic 

indoor environments, thus a spatially distributed resampling algorithm is crucial to effectively 

utilize sensor information to avoid the samples from degrading. Thirdly, identifying the 

information that needs to be exchanged is also a pressing problem [15] and thus a reasonable 

particle exchange strategy is required for the nodesô collaboration. 

In this paper, a spatial-temporal collaborative sequential Monte Carlo architecture for mobile 

robot localization is designed to well suites the intelligent environment for service robotic system. 

We consider a typical intelligent environment that consists of mobile robot and a smart camera 

network. Following this framework, an implementation algorithm using Augmented Particle 

Filter and automatic particle scheduling and routing strategy is proposed to exploit data 

parallelism and pipelining of resampling operations and improve the scalability of the filter 

architectures affected by the resampling process.   

The organization of the lecture is as follows. Section II describes the principle of the designed 

spatial-temporal collaborative SMC architecture. Section III gives the details about the proposed 

distributed resampling algorithm, namely Distributed Proportional Allocation-Augmented 

Particle Filter (DPA-APF) algorithm. Since the environmental dynamic affects the integrality and 

effectiveness of sensor observation, in Section IV we proposed a modified vision perception 

model and laser perception model for improving the robustness of the proposed algorithm in 



dynamic environment. In Section V, experimental results of both simulation and real-world 

application are given, which illustrates the effectiveness of the proposed method in service robot 

application.  

 

II Spatial-temporal Collaborative SMC Architecture  

We acknowledge and address the distributed implementation of SMC problem in three major 

aspects: (a) the sampling algorithm in single node that computes how the particles are predicted 

and propagated along time, (b) inter-node scheduling that shift samples to nodes for optimally 

resampling in the system, (c) how samples are exchanged among nodes via network 

communication. 

The distributed architecture of SMC is proposed as shown in Figure 1. It consists of the 

processing unit (PEs), a central unit (CU) and an interconnection network. In order to implement 

such architecture, a resampling algorithm called Distributed Proportional Allocation-Augmented 

Particle Filter (DPA-APF) algorithm is proposed. This algorithm replaces the traditional 

resampling procedure on single node by four steps executed among distributed smart nodes: 

Augmented Sampling (AS), inTer-node Resampling (TR), inNer-node Resampling (NR) and 

Particle Exchange (PE).  

 

Figure 1 Spatial-temporal Collaborative SMC Architecture 

According to the proposed architecture, collaboration between nodes is achieved via a 

strategy of sample allocation among distributed smart nodes in both temporal and spatial 

dimensions. In the temporal perspective, samples are generated and evaluated within one node 
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according to the standard prediction and update processes in the PF scheme. Since the 

sampling/importance Resampling (SIR) [17] method is known not so robust to outliers for two 

different reasons: sampling efficiency and the unreliability of the empirical prediction density in 

the tails of the distribution, we apply Auxiliary Particle Filters (APFs) [18][19] in the augmented 

sampling step, which can be coped with by a sensor node with reasonable processing power and 

memory. Since there are no data dependencies during the particle generation and evaluation, 

these steps can be easily parallelized and pipelined, maintaining N  particles in K  PUs, each 

carries kN  particles. In the spatial perspective, particles are re-allocated among nodes to 

guarantees that nodes with better observation can be assigned with more samples to be 

propagated closer towards the true posterior.  In each node, the TR step computes in CU the 

number of samples to be kept and the NR step achieves the required number of samples using 

importance resampling based technique. After that, the PE step exchanges particles among nodes 

to make sure that each node maintains the same number of particles for the next iteration period. 

 

III THE DPA-APF ALGORITHM 

a) Augmented sampling 

From a Bayesian perspective [20], the problem of robot localization is to recursively evaluate 

distribution ( )tbel x  of  the robotôs pose: 

1: 1: 1 1 1 1 1: 1 1: 2 1( ) ( | , ) ( | ) ( | , ) ( | , )t t t t t t t t t t t t tbel p p p p dx x z u z x x x u x z u x ,  (1) 

in which 1: 1tu  is  the motion control,  is a normalizer, 1 1( | , )t t tp x x u  is the robotôs motion 

model, ( | )t tp z x  is the sensor perception model. The Sequential Monte Carlo (SMC) 

methodology uses a set of random samples ( )

1,2,...,

i

t i N
x  to approximately represent the distribution 

( )tbel x : 

( )

1

1
( ) ( )

N

t i t
ti

bel
N x

x x ,     (2) 

In which N  is the number of samples, and ( ) ( )i
t

x
 denotes the Delta-Dirac function at sample

( )i

tx . Crisan and Doucet [21] concluded that SIR almost sure convergence in their research work. 



In the kth node (denoted as PUk ) , after initially drawing N uniformity distributed samples 

from the initial distribution 0( )p r , following steps are performed each time when 1( , )t tz u is 

available. 

Step1: sampling 
1~ ( | )i i

t t tpɛ x x  to draw the one-step-ahead prediction i

tɛ, where 1,...,i N ; 

Step2: when ,i

tɛ 1,...,i N  is obtained, compute the new index ( )Index i  of sample i , 

1,...,i N , i.e., ( ) ~ ( | ) ( | )i i

t t t tIndex i p i w pz z ɛ . The corresponding sample indexed with 

( )Index i  is to be propagated from 1t  to t ; 

Step 3: using robot motion model to draw samples based on the newly indexed samples  

( )

1

Index i

tx , i.e., ( )

1~ ( | )i Index i

t t tpx x x , 1,...,i N . Essentially, these two steps obtain a new sample set 

i

tx  through sampling from the prior distribution, i.e., ~ ( )i

t tpx x ; 

Step 4: using multisensory perception update to computes the weight i

tw  of the sample i

tx  

according to ( | ) ( | )i i i

t t t t tw p pz x z ɛ , and then normalized the weight according to 

1

N
i i i

t t t

i

w w . As a results, the augmented sampling procedure in PUk  obtains N  new samples 

1{ }i N

t ix , each sample is endowed with a weight of i

t . The perception model ( | )t tp z x  reflects the 

correspondence of the sample after motion update with current observations, and is a 

probabilistic model determined by the type of sensor, which will be discussed in Section IV.  

b) Inter-node Resampling 

To evaluate to effectiveness of the kth  node sensor observation about the current robotôs 

position, we propose a concept of particle cluster and its weight value. After the augmented 

sampling procedure within the kth  node, the average weight value is computed as the weight of 

the particle cluster: 

( )

PE,

1

1 kN
k i

t t

ik

w w
N

, 1,...,k K .     (3) 

The inter-node Resampling procedure treats the sample set of kth  node as one single particle 

cluster. The systematic resampling method is employed to determine the number of sample to be 

kept within the kth node for further resampling in the next period.  



Firstly, the sample weights sum of the kth  node is computed as ( ) ( )

PE,

1

k
k l

t

l

C w . Then a new 

variable ( )kU  is computed and compared with ( )kU , 1,...,k K . (0)U  is draw from the uniform 

distribution 0,1 K , and the equation ( ) ( 1) 1k kU U K  is used to calculate other ( )kU  for 

1,...,k K .  As show in Figure 2, this method divides the vertical axis of the coordinate into K  

equal parts.  

The number of times that the kth  particle cluster should be copied is computed according to 

( )

PE,

k

tw  as ( ) ( 1) ( )

PE,# ,k k k

tw C C , i.e., the frequency that 
( )

PE,

k

tw  falls between ( 1) ( ),k kC C .  Since 

the sample set of the kth  node is treated as a single particle cluster, the number of samples to be 

kept within this node is ( ) ( 1) ( )

PE,# ,k k k

k tN w C C M K , where M  is the total number of 

samples maintained in the whole system. 

 

Figure 2 Systematic resampling  

c) Inner-node resampling 

After kN ( 1,...,k K ), the number of samples to be maintained at each node is determined, 

parallel inner-node resampling is performed in all K  nodes simultaneously. Since the perception 

update cannot guarantee samples to approach the true distribution, therefore two validations are 

applied to introduce different resampling processes in this step for improving the robustness of 

resampling. Over-convergence validation process is implemented with entropy of normalized 

sample distribution and effective sample size. Uniformity validation is implemented through 

summation of sample weight of non-normalized sample distribution. More details about the two 

validations process can be found at our previous work [22]. 
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Since the particle cluster weight of each node differs, it represents that nodeôs observation is 

of different effectiveness about robotôs current position. The inter-node resampling and inner-

node resampling processes make sure that nodes with better observation can receive higher 

evaluation and thus produce more copy of its ñgoodò samples.  

d) Particle exchange 

In this process, the system will adjust the allocation of samples in all nodes to ensure that the 

number of samples on each node is equally N M K , getting prepared for the AS step of the 

next period. 

After the above process, those nodes with the sample number kN N  are called lacking 

nodes because the nodeôs current observation is more highly evaluated and require more samples 

for improving the approximation to the true distribution. These nodes will need to recruit a 

number of kN N  new samples from other nodes. Meanwhile, those nodes with the sample 

number kN N  are called surplus nodes, and a number of kN N  samples will be 

disseminated to other nodes. This particle exchange process allows the highly evaluated samples 

to be transferred to those nodes that lack effective samples, so that the distribution in the 

receiving nodes will more easily approximate the true posterior in the next period. 

 

IV IMPROVED SENSOR PERCEPTION MODELING 

The perception model ( | )t tp z x  characterizes the probability of receiving sensor measurement 

tz  given a robot pose tx .  In this system, sensor in one node can be either global camera or 

onboard laser range finder. Their perception models are denoted as ( | )Cam

t tp z x  and ( | )laser

t tp z x , 

respectively.  

a) Visual perception model 

Five stationary CCD cameras (Panasonic WV-CP240) were mounted on each side of the 

room above head level as shown in Figure 3 and Figure 4. Each camera detects the robotôs color 

marker (Figure 5) and gives an observation of robotôs ground position x  as a Gaussian random 

variable ( , )xNx . The vision measurement can be considered as ñdetection drivenò, i.e., 



this model is valid only when the robot is visible in vision subsystem. Thus t  is introduced to 

denote whether target is visible ( 1)t  or not ( 0)t  by the ith  camera: 

1, robot detected

0, otherwise
i       (4) 

 

Figure 3 The camera network configuration 

 

Figure 4 Camera measurement illustration 

Firstly, in situations that the occlusion is ignored, the camera observation model can be 

modeled as: 

z Ax v .      (5) 

In the visual perception system with K  networked cameras, the matrix A  can be written as: 

1 1

2 2

sin cos

sin cos

sin cosN K

A = .     (6) 

Secondly, we consider the most common situations with occlusion, the visual observation 

equation of iCam  is: 

Cam1

Cam2 Cami

CamN

1

2
i

N

id

robot

Dynamic obstacle

x

y

x=(x,y)

z
t



( )T T

i i i i i iz a x ɛ v a ɛ, 1,2,...,i K .    (7) 

in which 
1 1[ sin cos ]T

ia , iv  is the observation error of iCam  that satisfies (0, )i v
i

Nv  

and 
2

2 (1,1)v oi i i
i

d diag  where 2

oi
 is the positional covariance of the occluding object 

and  id  is the distance between iCam  to the center ɛ of the occluding object. Hence the vision 

model when the camera detects the object is   

T

i i i iz a x v ,      (8) 

and if the camera fails to detect the object, it will consider that the object is located at its average 

position. 

T

i iz a ɛ.      (9) 

In cases that the occluding aspect is considered, the covariance of x , x  is: 

T T

x xE E E Ex x x x xx ,    (10) 

in which Ex = x x . We assume that x  can be written as: 

2 (1,1 )x xdiag       (11) 

Now we compute z , the variance of  z , according to the variance of x . For simplicity, we 

characterize the linear relation between z  and x  as z Hx V . As a result, we will have 

( )

T

z

T T T T T T

T T T T T

x

E E E

E E E E E

E E E E E

z z z z

Hx V H x V x H V x H V

H x x x x H VV HP H VV

  (12) 

We replace T

i iH a  and T T

i i i i iV v + a ɛ- a ɛ to Equation 12 to get: 

2 2 2

2 2 2

(1 )

(1 )

T T T T

z i i x i i i i i i
i

T T T

i i x i v i i i
i

P E

P

a a + v v a ɛɛ a

a a + a ɛɛ a
   (13) 

2 1 2 1 2 1 2 2 2 2 2 2, ,i i i x z v
i i i

x z v . 

The visual observation model ( | )iCam

t tp z x characterizes the probability that iCam  obtains the 

observation tz when the robot is positioned at tx .  As a result, the visual observation probability 

distribution is computed as: 



1

, , , ,

1 1
( | ) exp( ( ) ( ))

22 | |

iCam T

t t i t i t z i t i t
i

z
i

p z x z x z x   (14) 

 

 

Figure 5 The robot and cameraôs view image 

b) Laser perception model 

To calculate ( | )laser

t tp z x , the Likelihood Field Model models three types of noise sources: 

hit hit rand max max( | )laser

t tp M z p z p z p
rand

z x , .     (15) 

Measurement noise: hitp  captures the sensor noise by a zero-mean Gaussian. The hitp model 

of the i th laser beam is computed as 

2

hit , hit

hit hit

11( | ) ( , ) exp( ),
2 2i it tp p dist dz x      (16) 

where 
i

d is the Euclidean distance between the i th laser point (after transformed to the x-y 

coordinate frame) and the nearest obstacle in the local grid map obtained by the laser ray-tracing. 

Obstacle candidates can be either mapped objects or people hypothesis.  

Failures: The possible failures of the max-range readings are modeled by a point-mass 

distribution maxp . 

Unexplained random measurement: The random noise of laser sensors is modeled by a 

uniform distribution randp . 

For an entire laser scan, the probability ( | )laser

t tp Mz x ,  amounts to Equation 17 under an 

independent assumption among the readings of each laser beam. 

,

1

( | ) ( | , )
i

i

N
laser laser

t t k kp M p Mz r , z x .     (17) 

 

V EXPERIMENTAL RESULTS 
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a) Filters simulation performance 

We firstly use a simulated model to evaluate the performance of AS using auxiliary particle 

filtering in each sensor nodes. Assume that the target motion is modeled by non-linear dynamic 

equation and non-linear observation equation:  

1
-1

1

20
0.6 10cos 1.5 1

1

k
k k k

k

x
x x k w

x
,   (18) 

2

10

k
k k

x
z v .      (19) 

In which kw  and kv  are zero-mean Guassian white noises with ( ) 5.0kVar w  and ( ) 1.0kVar v . 

In the simulation, the number of samples was chosen 500 and the time step was 50. As can be 

seen from Figure 6, the augmented particle filter outperforms traditional particle filter in that the 

posterior distribution can better approximate the target distribution. The tracking error RMS is 

computed according to Equ.20. 

2

1

1
Ĕ( ) ( )

tf

t

RMS x t x t
tf

.     (20) 

The result in Figure 6 shows that the APF method is capable of keeping closer track of the system 

movement and achieving smaller RMS error.  
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Figure 6 Tracking performance of APF and PF 

b) Global localization experiment 

Firstly, a simulated room environment was built in which a number of K  networked cameras 

(as shown in Figure 7) were allocated in walls for detecting robot and other moving objects. We 

tested different situations when the number of sample N  takes value 1000, 5000, 10000 and K  

takes value 1, 2, 4, 8, 16 and 32 to verify the performance of the proposed Spatial-temporal 

collaborative particle filter method in robot localization, and the result is shown in Figure 8. In all 

the experimental trials, the proposed DPA method shows significant advantages than the 

traditional centralized resampling method. The centralized resampling method needs to gather N  

samples from all nodes and disperse them after resampling via the network communication, 

which not only burdens the central processor but also aggravates the network transportation load. 

In contrast, the DPA method proposed in this paper only needs /N K  times TR in CU and kN  
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times TR in each node. Hence the processing burden of CU and the data communication amount 

in the system is greatly reduced. 

 

Figure 7  Simulation configuration 

 

Figure 8  Parallel execution efficiency of DPA   

Secondly, we conducted experimental trials in real world dynamic indoor environment 

designed for home-care applications in which a Pioneer 3 DX robot and moving people coexisted 

[23].  Figure 9 shows and example of the experiment where red dot denotes the samples and the 

green dot denotes the projected robot laser scan data. After a robot with unknown initial pose 

starts a global localization process, Figure 10 (a) shows the positional distribution just after the 

initialization, with particles scattered over the map. As shown from Figure 10 (b) to (d), when the 

robot navigated in the room and encountered moving people nearby, the people caused certain 

occlusion in global cameraôs (Cam5) view and this triggered the node collaboration process to 
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ensure optimal arrangement of the nodes for keeping track of the robot and maintaining its pose 

estimation. In this case, Cam2 is selected as the most appropriate view.  

 

 

Figure 9 The robotic home-care environment and layout of the camera network 

As shown in Figure 10 (d), sensor evidence eventually disambiguated between the primary 

hypotheses and converged on the true state of the robot. The corresponding evolution process of 

the global positional error of the robot is shown in Figure 11, which shows that the proposed 

method achieved lower error and smoother variance of the global position for the robot. The 

average accuracy results, recorded when the robot samples converged, indicated the mean 

positional errors of the robot were both less than 10cm. When the proposed method is compared 

with Zhaoôs method [12], we can find that the DPA-APF method achieved lower positioning 

error, as shown in Figure 12. 
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Figure 10  Mobile robot localization in dynamic environment with people coexistence 
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Propagation of the belief state density in the (a) X-coordinate (b) Y-coordinate 

Figure 11 Evolution of the global positional uncertainty of the robot 

 

Figure 12  Localization accuracy comparison  

 

VI. CONCLUSIONS 

 

In this paper, a spatial-temporal collaborative sequential Monte Carlo architecture and an 

implementation algorithm named Distributed Proportional Allocation-Augmented Particle Filter 

(DPA-APF) are proposed. The proposed method exploits the parallelism and pipelining of 

resampling operations among distributed nodes, and thus extends the traditional particle filters to 

distributed implementation that is featured with high efficiency, flexibility and scalability. 

Application for mobile robot localization and navigation in typical intelligent environment with 

networked laser and camera sensors is given and the experimental results validate the 

effectiveness of the proposed method.  
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