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Abstract- Journal-bearings play a significant role in industrial applications and the necessity of 

condition monitoring with nondestructive tests is increasing. This paper deals a proper fault detection 

technique based on power spectral density (PSD) of vibration signals in combination with K-Nearest 

Neighbor and Support Vector Machine (SVM). The frequency domain vibration signals of an internal 

combustion engine with three journal-bearing conditions were gained, corresponding to, (i) normal, (ii) 

corrosion and (iii) excessive wear. The features of the PSD values of vibration signals were extracted 

using statistical and vibration parameters. The extracted features were used as inputs to the KNN and 

SVM for three-class identification. The roles of PSD technique and the KNN and SVM classifiers were 
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investigated. Results showed that the accuracy rate of fault diagnosis was 100%. Also, the results 

demonstrated that the combined PSD-SVM model had the potential for fault diagnosis of engine 

journal-bearing. 

 
Index terms: condition monitoring, power spectral density, k-nearest neighbor, support vector machine, 

vibration signal, fault diagnosis 

 

 

I. INTRODUCTION 

 

Condition monitoring of machines is gaining importance in industry because of the need to 

increase reliability and to decrease possible loss of production due to machine breakdown [1]. 

Reliability has always been an important aspect in the assessment of industrial products [25]. 

With the increase in production capabilities of modern manufacturing systems, plants are 

expected to run continuously for extended hours. Therefore, the condition monitoring of 

machines, especially early fault diagnosis, is proved to be necessary and has been received wide 

attentions in this decade [26]. Most of machinery used in the modern world operates by means of 

rotary parts which can develop faults. The monitoring of the operative conditions of a rotary 

machine provides a great economic improvement by reducing maintenance costs, as well as 

improving the safety level. [2-6-19]. 

The technique of early fault diagnosis is used to prevent serious damages in a mechanical system. 

Rotating machinery such as internal combustion engines, gearboxes, electromotor, pumps, and 

air compressors can have their vibration and acoustic emission signals monitored for early fault 

diagnosis [3-4-5]. 

Vibration analysis has been used in rotating machines fault diagnosis for decades. By measuring 

and analyzing the vibration of a machine, it is possible to determine both the nature and severity 

of the defect, and hence predict the machine’s useful life or failure point [7]. 

It has been known for many years that the mechanical integrity of a machine can be evaluated by 

detailed analysis of the vibratory motion [8]. Vibration signals carry information about exciting 

forces and the structural path through which they propagate to vibration transducers. A machine 

generates specific vibrations when in a healthy state and the degradation of a component within it 

may result in a change in the character of the vibration signals. 
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In fact, each fault in a rotating machine produces vibrations with distinctive characteristics that 

can be measured and compared with reference ones in order to perform the fault detection and 

diagnosis. [9]. 

Journal-Bearings are multifunctional devices. In order to operate efficiently and provide long 

service life, journal-bearings often have to satisfy several requirements simultaneously. Journal 

bearings are used to carry radial loads, for example, to support a crankshaft. So, the detection and 

understanding of condition degradation in the journal-bearing is important for engine 

performance. Slavic et al. [22] have applied force measurements for identify journal-bearing 

faults. Saridakis et al. [23] have performed journal-bearing fault diagnosis based on Artificial 

Neural Network. 

The analysis of vibration signals was often based on the Fast Fourier Transform (FFT). This 

approach suffers from some limitations. Among these limitations, the FFT is not efficient to 

describe the non-stationarities introduced by faults in the vibration signal. In order to overcome 

these performance limitations inherent to the FFT approach, many modern spectral estimation 

techniques have been proposed during the last two decades [10]. Power spectral density (PSD) is 

one of those methods that are reported by several research works [5] such as [11]. Mollazade et 

al. [5] have showed that PSD of frequency diagram is an effective method for fault diagnosis of 

external gear hydraulic pumps. In [20], PSD was applied for detection of faulty gearbox. Cusido 

et al. [21] have implemented combination of wavelet decomposition using PSD in induction 

machine diagnosis.  

When full knowledge of the under lying probabilities of a class of samples is available Bayesian 

theory gives optimal new sample classification rates. In cases where this information is not 

present, many algorithms make use of the similarity among samples as a means of classification. 

The Nearest Neighbor decision rule has often been applied in these patters recognition problems. 

K-nearest neighbor (KNN) decision rule has been a ubiquitous classification method with good 

scalability.  

SVM performs machine condition monitoring and diagnosis using its unique ability in 

classification process [17]. Several methods have been proposed for multi-class classification by 

combining several binary classifiers. 

In the present work, a procedure is implemented to the detection of fault condition using 

vibration signals. Three conditions the journal-bearing is studied, namely, normal, corrosion and 
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excessive wear conditions. The role of the PSD and feature extraction technique, the KNN and 

SVM classifiers is surveyed. The procedure is illustrated using the vibration data of an IC engine. 

The KNN and multi-class SVM classify the three situations of journal-bearing. 

 

II. MATERIALS AND METHODS 

Vibration Data 
 
The case study for this work was a 4 cylinder internal combustion engine with power of 125 hp. 

Vibration signals were collected for the normal, corrosion and excessive wear conditions. Faulty 

journal-bearings were selected from the IC engine that was worked for a long time periods and 

their faults led to reduce of their efficiencies. The working speed of shaft of the engine was set at 

approximately 1500 rpm. 

The vibration signals in frequency-domain were measured for three situations of journal-bearing 

by an accelerometer. Then, Root mean square (RMS) of vibration acceleration (g) was calculated 

for these signals. The accelerometer (VMI-102 model) was mounted horizontally on the 

crankcase of engine ahead main journal-bearing exactly. The sensor was connected to the signal-

conditioning unit (X-Viber FFT analyzer). The software SpectraPro-4 that accompanies the 

signal-conditioning unit was used for recording the signals directly in the computer. The 

sampling rate was 8192 Hz and the number of data in each sample was 12800.  

 
Power Spectral Density (PSD) 
 
Power spectral density (PSD) function indicates the vigor of the variations (energy) as a function 

of frequency. In other words, it shows at which frequencies variations are powerful and at which 

frequencies variations are weak. The PSD curve is the normal method used to describe random 

vibration specifications. Since the PSD curve is a plot of acceleration density, the overall rms 

acceleration can be found by summation of the density over frequency [12, 24]. 

The complex spectrum of a vibration x(t) in the time range (t1, t2) for any frequency f in the two-

sided frequency domain (-F, +F) can be expressed as [5]: 

   2

1

2( ) ( )
f ift

f
X f x t e dtπ−= ∫                     (1) 

Generally, if FFT of vibration signal be applied, PSD can be computed directly in the frequency 

domain by following formula: 
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2

rmsgPSD
f

=                         (2) 

where grms is the Root Mean Square of acceleration in a certain frequency f [13]. 

 

Feature Extraction 
 
The measured PSD values of signal were calculated to obtain the most significant features by 

feature extraction. The accuracy of feature extraction is of great importance since it directly 

affects the final diagnosis results [5]. In this work, 30 features extracted from the PSD values of 

vibration signals using statistical and vibration parameters. Some of used parameters are: 

Maximum, Minimum, Average, Root Mean Square (RMS), Standard Deviation (Stdv), Variance 

(Var), 5th Momentum (5th M), sixth momentum (6thM), Crest Factor, Skewness, Kurtosis, etc. 

 
K-Nearest Neighbor 
 
Some training samples are used for train the KNN rule. K nearest neighbour rule holds position 

of training samples and their class. When decision about new incoming data is needed, distance 

between query data and training samples is being calculated. Based on the defined threshold for 

the rule (it is the K number), K samples with least distances is selected and the class with more 

samples inbound is the result. In the other word, for example if there is 2 or 3 features for a 

classification situation, position of training samples and input sample can be visualized on 2D 

and 3D Cartesian coordinates. Process to find result is like to draw a circle (Sphere) centred on 

input location and increase radius until k samples are embed inside the circle (sphere) and then a 

class with more samples inbound is the result.  

Without prior knowledge, the KNN classifier usually applies Euclidean distances as the distance 

metric. However, this simple and easy-to-implement method can still yield competitive results 

even compared to the most sophisticated machine learning methods [16]. The Euclidean distance 

between point p and q is the length of the line between them. In Cartesian coordinates, if  ip  and  

iq  are two points in Euclidean n -space, then the distance from p to q is given by: 

 

2

1
( )

n

E i i
i

d p q
=

= −∑                               (3) 
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Support Vector Machine  
 
The Support Vector Machines (SVM) have been developed by Vapnik and are gaining popularity 

due to many appealing features, and promising empirical performance. SVM, based on statistical 

learning theory, is a proper technique for solving a variety of learning and function assessment 

problems. Support vector machines (SVM) were originally designed for binary (2-class) 

classification [14]. In binary classification, the class labels can take only two values: 1 and -1.  

A simple introduction of SVM is presented here for completeness. "The SVM can be considered 

to construct a line or hyperplane between two sets of data for classification. In case of two-

dimensional situation, the action of the SVM can be explained simply without any loss of 

generality. The SVM tries to place a linear hyperplane between the two different classes." [18], 

with maximum margin (distance between closest vectors in each class and hyperplane).  In other 

words, the SVM attempts to orient the hyperplane such that the distance between the hyperplane 

and the nearest data point in each class is maximal. Then the hyperplane is placed in the middle 

of this margin. The nearest vectors are used to define the margin and are known as support 

vectors. Once the support vectors are selected, the rest of the feature set can be removed, since 

the SVs contain all the essential information for the classifier. 

 
SVM Theory 
 
Suppose label the training data { , }, 1,...,i ix y i l=  , { 1,1}, d

i iy x R∈ − ∈ . There are some hyperplane 

that separates the positive (class +1) from the negative (class -1) examples. The vector x  which 

lie on the separating hyperplane satisfy . 0w x b+ = , where w  is normal to the hyperplane. In the 

separable case, all data satisfy the following constraints: 

. 1iw x b+ ≥ + , 1iy = +                           (4) 

. 1iw x b+ ≤ − , 1iy = −                           (5) 

These can be combined into the following inequalities: 

 
( . ) 1 0i iy w x b+ − ≥    i∀                      (6) 

 
( )d d+ − is the shortest distance from the separating hyperplane to the closest positive (negative) 

training data. The margin of a separating hyperplane is defined to be d d+ −+ . By constraints 

Eq.(4) and Eq.(5) , 21d d w+ −= = and the margin is simply 22 w . Thus we can find the 
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separating hyperplane which gives the maximum margin by minimizing 2w , subject to 

constraints Eq.(6). Using the Lagrange multiplier technique, a positive Lagrange multipliers

, 1,...,i i lα = , one for each of the inequality constraints Eq.(7) is determined. This gives 

Lagrangian: 

2

1 1

1min ( . )
2

l l

p i i i i
i i

w y x w bα α
= =

= − + +∑ ∑   ,    0iα ≥               (7) 

In order to deal properly with nonlinear SVM, p is transformed into dual problem: 

,

1max ( . )
2p i i j i j i j

i i j
y y x xα α α= −∑ ∑ , 0iα ≥ , 

1
0

l

i i
i

yα
=

≥∑      (8) 

In the case where the data cannot be separated by hyperplane without errors, Vapnik propose that 

introducing positive slack variables , 1,...,i i lξ = , the constraints become:  

. 1i iw x b ξ+ ≥ + −   for  1iy = +                     (9) 

. 1i iw x b ξ+ ≤ − +   for  1iy = −                     (10) 

 0iξ ≥                                                         (11) 

The goal is to build hyperplane that makes the smallest number of errors. Hence the objection 

function becomes:  

minimize: 
2

( )
2 ii

w
C ξ+ ∑                         (12) 

where C  is penalty parameter, a larger C  corresponding to assigning a higher penalty to errors. 

The C  must be chosen by the user. The optimization problem becomes: 

,

1max ( . )
2D i i j i j i j

i i j
y y x xα α α= −∑ ∑ , 0 i Cα≤ ≤ , 0i i

i
yα ≥∑     (13) 

 
Suppose that the data is mapped to a higher dimension space (feature space), using a mapping 

which is called φ  

: dR Fφ →                    (14) 

Then the training algorithm would only depend on the data through dot products in F , i.e. on 

functions of the from ( ). ( )i jx xφ φ . Kernel function is the significant concept of SVM, The 

definition of kernel is: 

( . ) ( ). ( )i j i jk x x x xφ φ=                (15) 
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In below, the formulation of three kernels is given: 

 
Linear:  ( . ) .i j i jk x x x x=         (16) 

Polynomial: ( . ) ( . 1)d
i j i jk x x x xγ= + , 0γ >      (17) 

Gaussian RBF:
2

2( . ) exp
2
i j

i j

x x
k x x

σ

 − − =
 
 

     (18) 

So the optimization problem of nonlinear SVM is: 

,

1max ( . )
2D i i j i j i j

i i j
y y k x xα α α= −∑ ∑ , 0 i Cα≤ ≤  , 0i i

i
yα ≥∑        (19) 

After solving this optimization problem, those points which 0iα >  are called ‘support vectors’. 

Then they determine w  by Eq.(20). And b  can be found by KKT ‘complementarily’ condition 

Eq.(21), where is  are support vectors and sN  is the number of support vectors. 

                ( )
sN

j j j
j

w y sα φ=∑                           (20) 

         ( ( . ( ) ) 1) 0i j jy w s bα φ + − =                 (21) 

Finally, the class of x  is: 

( . ) ( , )
sN

j j j
j

sign w x b sign y k s x bα
 

+ = + 
 
∑    (22) 

 

Multi-class Support Vector Machine 
 
In the real world, we deal more than two classes for examples: in condition monitoring of 

rotating machineries there are several classes such as journal-bearing faults, mechanical 

unbalance, misalignment [17], different load conditions, gear faults etc. There are different 

methods for multi-class SVM such as one-against-all (OAA), one-against-one (OAO), etc.  

Among various multi-class SVM, the OAA method is earliest implementation for SVM multi-

class classification. It builds k  SVM models where k  is the number of classes. The i th SVM is 

trained with all of examples in the i th class with positive labels, and all the other examples with 

negative labels [17]. Thus given l  training set 1 1( , ),..., ( , )l lx y x y  , where , 1,...,n
ix R i l∈ = and 

{ }1,...,iy k∈  is the class of ix , the i th SVM solve the following problem:  
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minimize:  
12

1

1 ( )
2

i i i T
j

i
w C wξ

=

+ ∑                       (23) 

subject to: ( ) ( ) 1i T i i
j jw x bφ ξ+ ≥ −    if  y i=       (24)                                                                  

( ) ( ) 1i T i i
j jw x bφ ξ+ ≤ − +     if   y i≠                   (25)                                                                                               

0i
jξ ≥   ,  1,...,j l=                                             (26) 

where the training data ix  is mapped to a higher-dimensional space by function φ  and C , is the 

penalty parameter and  ξ , is the slack variable. 

Minimizing Equation (23) means to maximize 2 / iw . When data is not separable, there is a 

penalty term ,1

l
i ii

C ξ
=∑ , which can reduce the number of training errors. 

Finally, x is in the class which has the largest value of the decision function ( )Tw x bφ +  [15]. 

We have implemented these methods by using SVM Toolbox. The software is available at 

http://asi.insa-rouen.fr/~gloosli/simpleSVM.html 
 

III. RESULTS AND DISCUSSION 

 

The aim of this paper is the main journal-bearing fault detection using signal processing and 

classification techniques. The paper consists of three stages: signal processing, feature 

recognition and extraction, and decision-making. Always, the signal analysis must be done first, 

and then the information gathered in that process will be used towards decision making. In order 

to make an appropriate decision regarding fault diagnosis, it is essential to have a priori 

knowledge of the journal-bearing type of engine, operating conditions such as crankshaft rotating 

speed, defect types and the severity of each defect type. 

Figure 1 shows the samples of the PSD diagram of vibration signals acquired for different 

conditions of the journal-bearing. By attention to this Figure, it can be seen that the maximum 

value of the PSD is lower in healthy situation. Also, the PSD values of vibration signal for 

excessive wear condition are more than other conditions.  
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Figure 1. PSD- Frequency diagrams of journal-bearing in three conditions: (i) normal (ii) 

corrosion (iii) excessive wear 

 

Feature extraction directly affects final diagnosis results. 30 features extracted were used as 

inputs to the classifiers. Constructed data set for each class divided into two parts, training and 

testing data. In the present work, the training process is using 60 data to train the KNN and SVM 

parameter, and the classification process is used to classify with 60 data for each journal-bearing 

condition in the constant rotating station [27, 28]. The detailed description of the data set is 

shown in Table 1. 

 
Table 1. Description of journal-bearing data set 

Journal-Bearing 
condition 

Number of 
training samples 

Number of 
testing samples 

Label of 
classification 

Normal 30 30 1 

Corrosion 30 30 2 

Excessive wear 30 30 3 
 

In this work, we studied the accuracy rate of the KNN and SVM. The classifiers were trained by 

training data set, and then their performance was exactly estimated by testing data set [30]. Also, 

their accuracy rate was compared. It must be stressed that the most significant criterion for 

evaluating the performance of these classifiers is their classification success rate. 
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Performance Comparison of the KNN and SVM 

The KNN is a classifier that its accuracy is always 100% on training data set, because the KNN 

holds the position of training data set and their class during the classification process. The test 

success of the KNN just depends on the K value. The variable K value was used between 1 and 

10 for the KNN.  

The performance of the SVM depends on the choice of the kernel function to map a data from 

original space to a higher dimensional feature space. There are no certain rules governing its 

choice. The RBF kernel is the one of the best kernel for constructing SVM and provides excellent 

results for fault diagnosis applications [1, 29]. We considered the penalty parameter C  of 103, 

condition parameter for QP method (lambda=10-7), RBF kernel and OAA multi-class method for 

the SVM. The values of the RBF kernel width (σ) was selected in the range of 0.1 to 1.  

Sensitivity, specificity and total classification accuracy are three criteria to determine the test 

performance of classifiers. These criteria are defined as: 

Sensitivity: number of true positive decisions/number of actually positive cases. 

Specificity: number of true negative decisions/number of actually negative cases. 

Total classification accuracy: number of correct decisions/ total number of cases. 

Among these criteria, total classification accuracy is commonly applied in fault diagnosis 

applications [30, 31]. Table 2 shows the total classification results for different journal-bearing 

conditions. 

 
Table 2. Performance of the KNN and SVM 

No 
KNN SVM 

(K), accuracy (σ), accuracy 
1 (1), 85.7% (0.1), 100% 
2 (2), 82.51% (0.2), 98.64% 
3 (3), 79.03% (0.3), 95.33% 
4 (4), 76.56% (0.4), 91.78% 
5 (5), 76.06% (0.5), 89.51% 
6 (6), 74.08% (0.6), 86.22% 
7 (7), 70.64% (0.7), 85.33% 
8 (8), 53.74% (0.8), 85.01% 
9 (9), 49.26% (0.9), 84.66% 
10 (10), 33.33% (1), 83.33% 
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The performance of the KNN was in the range of 33.33% to 85.7%. The accuracy rate of OAA 

method was 100% on both training and testing data set. This accuracy was occurred in the RBF 

kernel width of 0.1 (σ=0.1). Figure 2 and 3 shows the performance variations of the KNN and 

SVM, respectively.   

 

 
Figure 2. Accuracy rate of the KNN under different K values  

 

 
Figure 3. Accuracy rate of the SVM under different values of RBF kernel width  

 

By attention to this result, it can be found that the PSD is the one of powerful signal processing 

technique. The performance of the SVM was substantially better than the KNN, but the 

computation time of the KNN was relatively lower than the SVM. Finally, it be seen that the 
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SVM classifies the different faults of journal-bearings perfectly. It’s due to the unique ability in 

classification problems. It is to be stressed here that the SVM becomes famous and popular in 

machine learning community due to the excellence of generalization ability than the traditional 

method such as neural network [17]. The perfect accuracy rate was due to apply the proper 

diagnostic method. Therefore, it can be concluded that it is essential to apply the proposed 

intelligent system for the fault detection of main engine journal-bearing in order to increase 

accuracy and reduce errors caused by subjective human judgment [31]. 

 

IV. CONCLUSION 

 

A combined Power Spectral Density (PSD), K-Nearest Neighbor (KNN) and Support vector 

Machine (SVM) have been presented to perform fault diagnosis of a journal-bearing. Three states 

of journal-bearing was detected, namely, normal, corrosion and excessive wear conditions. 

Firstly, the PSD values of the vibration signal of journal-bearing were calculated from obtained 

spectrums. Secondly, 30 features were extracted as inputs to classifier. Finally, the structure of 

KNN and SVM classifiers was built by feeding the training set and then its performance was 

estimated by test set. Euclidean distance and one-against-all (OAA) multi-class method were 

used for the KNN and SVM. The best classification accuracy of three conditions of journal-

bearing was 85.7% and 100% on test set for the KNN and SVM, respectively. The results show 

that the SVM is a stronger technique for fault diagnosis of rotating machinery. Also, the results 

demonstrate the ability and reliability of proposed the PSD-SVM model in diagnosing main 

engine journal-bearing faults.  
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