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Abstract- This paper presents data fusion algorithm of fault diagnosis considering sensor measurement 

uncertainty. Random-fuzzy variables (RFV) are used to model testing patterns (TPs) and fault template 

patterns (FTPs) respectively according to on-line sensor monitoring data and typical historical sensor 

data reflecting every fault mode. A similarity measure is given to calculate matching degree between a 

TP and each FTP in fault database such that Basic Probability Assignment (BPA) can be obtained by 

normalizing matching degree. Several BPAs provided by many sensor sources are fused by Dempster’s 

rule of combination. A diagnosis decision-making can be done according to the fusion results. Finally, 
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the diagnosis examples of machine rotor system with vibration sensors show that the proposed method 

can enhance accuracy and reliability of data fusion-based diagnosis system. 

 

Index terms: sensor data fusion, fault diagnosis, random-fuzzy variable, similarity measure, Dempster-Shafer 

evidence theory. 

 

I. INTRODUCTION 

 

maintenance decision-making, and cost minimization. For critical equipment, on-line condition 

monitoring and on-line fault diagnosis are often needed. There is no single sensor that can 

reliably obtain all the information required for fault diagnosis. With development of sensor 

technology, a great deal of monitoring data can be obtained by sensor instruments mounted on 

equipment. Generally, these sensor data are uncertain because of some unavoidable factors 

including the random disturbances in measurement environment and system errors of sensor 

instrument, etc [1]. New challenges have arisen with regard to making more reasonable 

inferences based on multi-source information with uncertainty. 

Dempster-Shafer (DS) evidence theory can combine multi-source information to reduce the 

uncertainty and yield more accurate diagnosis results than any single-source information [2]. In 

the framework of DS evidence theory, fault modes are modeled as elements in frame of 

discernment. The Basic Probability Assignment (BPA) function can be considered as the 

matching degrees between an on-line testing pattern and each fault template pattern in fault 

database. These BPAs can be fused by Dempster’s rule of combination. A diagnosis decision-

making can be done according to the fusion results. 

Testing pattern (TP) and fault template pattern (FTP) can be extracted respectively from on-line 

monitoring data and typical historical data reflecting every fault mode. Hence, how to mode TP 

and FTP based on uncertain data, and obtain BPA according to relation between TP and FTP are 

two keys in fault diagnosis based on DS evidence theory. 

 International Electro-technical Commission (IEC) established a Guide to the expression of 

uncertainty in measurement. It suggested that statistical approaches can be used for the 

expression and estimation uncertainty of sensor data [3]. However, statistical approaches are only 
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suitable for data with randomness. Reference [4] also presented that TP and TFP can be all 

modeled as Gaussian membership functions. BPA can be calculated by fuzzy max-min operator. 

Nevertheless, in practice, sensor data have not only randomness caused by disturbances in 

environment but also non-randomness, i.e., unknown systematic uncertainty, derived from 

systematic error of sensor itself. Single statistical method or fuzzy method cannot 

comprehensively deal with two different uncertainties [5]. 

Alessandro Ferrero presented that fuzzy variable and random variable can be used to respectively 

describe unknown systematic uncertainty and random uncertainty, and both kinds of variables 

can be integrated as “random-fuzzy variable (RFV)” to model sensor data completely and 

naturally [5]. 

This paper presents data fusion algorithm of fault diagnosis considering random uncertainty and 

unknown systematic uncertainty of sensor data. Random-fuzzy variables (RFV) are used to 

model testing pattern (TP) and fault template pattern (FTP) respectively according to on-line 

monitoring data and typical historical data. A similarity measure fit for RFVs is given to calculate 

matching degree between a TP and each FTP in fault database such that BPA can be obtained by 

normalizing matching degree. Several BPAs provided by many sensor sources are fused by 

Dempster’s rule of combination. A diagnosis decision-making can be done according to the 

fusion results. The fault diagnosis structure is shown in Figure 1. Finally, the diagnosis examples 

of machine rotor system with a vibration displacement sensor (VDS) and a vibration acceleration 

sensor (VAS) show that the proposed method can enhance accuracy and reliability of fusion-

based diagnosis system. 
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Figure 1. Fault diagnostic structure 

 

II. THE DEMPSTER-SHAFER EVIDENCE THEORY 

 

Let Θ be a finite nonempty set of mutually exclusive alternatives. It is called the frame of 

discernment including all possible propositions. In fault diagnosis, Θ={Fj| j=1, 2, … , N} is a set 

of fault propositions, where Fj is the proposition that fault Fj happens. Let 2Θ be the power set of 

Θ and contain all subsets of Θ. The Basic Probability Assignment (BPA) is a mapping from 2Θ 

to [0, 1] defined by m: 2Θ→[0,1], which satisfies the following conditions: (1) m( )=0; (2) For 

any 2A , ( ) 1
A
m A . If m(A)>0, A is called focal element[4,6]. In this paper, only single 

faults are considered, namely, the form of BPAs are {m(F1), … , m(FN), m(Θ)}, where m(Fj) 

means the possibility that fault Fj occurs and m(Θ) means the degree of ignorance. 

Two BPAs coming from independent sources can be combined by Dempster’s rule of 

combination, 1 2m m m , defined as follows [4, 6]: 

1 2
1 1 2 2( ) ( )

,
( ) 1

0

C C C
m C m C

C
m C k

C    
      

(1) 

where 
1 2

1 1 2 2( ) ( )
C C

k m C m C is called the degree of conflict. 
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III. THE METHOD OF FAULT FEATURE EXTRACTION BASED ON RANDOM-

FUZZY VARIABLE 

 

When the uncertainty of sensor data is mainly affected by randomness, statistical approach is able 

to express and estimate the uncertainty, since statistical theory is the most known and used 

mathematical tool to deal with statistical distributions of data. But it fails when sensor data are 

simultaneously affected by non-randomness, i.e., unknown systematic uncertainty. On the other 

hand, Fuzzy variables are able to express and deal with sensor data affected by unknown 

systematic uncertainty [5]. However, it can hardly handle randomness. 

Although fuzzy variable and random variable are defined in a different way and they obey 

different mathematics, with respect to Theory of Uncertainty, fuzzy variable and random variable 

should not be considered competitive but rather complementary. In practice, uncertainties arising 

in the sensor measurement processes consist of randomness and unknown systematic uncertainty, 

so both kinds of variables are all needed [7]. 

The random-fuzzy variable can effectively express the contributions of different effects (random 

and unknown systematic) to uncertainties of sensor data. In this section, the definition of RFV is 

briefly introduced, and then it will be used to model testing pattern and fault template pattern. 

 

a.  The definition of Random-Fuzzy Variables 

RFV is a particular kind of type-Ⅱ fuzzy variables, whose α-cut B  is confidence intervals of type 

Ⅱ [7, 8],
 

1 2 3 4[[ , ], [ , ]] , [0,1]B b b b b           (2) 

and obeys the following constraints [7, 8]: 

1) 1 2 3 4b b b b for [0,1] ; 

2) For all [0,1] , the corresponding sequences of type 1 external confidence interval 

1 4[ , ]b b and inner confidence interval 2 3[ , ]b b  can generate respective normal and 

convex membership function;  

3) For [0,1]'
 

1 3 1 3

2 4 2 4

[ , ] [ , ]

[ , ] [ , ]

b b b b

b b b b

' '

' '

'
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4) 1 1 1 1

2 3 1 4[ , ] [ , ]b b b b . 

 

Figure 2. Example of RFV 

Figure 2 gives an example of RFV. For a sensor datum, the confidence level that it is within α-cut 

B  is p=1-α, for instance, α=0.25, p=1-0.25=0.75. So B   can be called a confidence interval.  

In fact, RFV is obtained by combining the inner and external membership function according to 

their α-cuts for all possible [0,1] . 

When RFV is adopted to express uncertainties, the widths of the closed intervals 1 2[ , ]b b  and 

3 4[ , ]b b  in (1) reflect randomness contribution to whole uncertainties. On the other hand, the 

closed internal interval 2 3[ , ]b b  in (1) is a type 1 confidence interval and its width reflects the 

contribution of unknown systematic error to whole uncertainties. 

It can be concluded that a RFV can perfectly deal with uncertainties of sensor data because it can 

not only model randomness and unknown systematic error, but also distinguish their different 

contributions to whole uncertainties by using a unified form. 

 

b.  Model Fault Template Pattern and Testing Pattern as RFVs 

Here, Testing pattern (TP) and fault template pattern (FTP) are all modeled as RFVs respectively 

according to on-line monitoring data and typical historical data reflecting every fault mode. All 

RFVs of FTPs compose fault database. 

 

b.i  RFV model of fault template pattern 

The detailed steps of determining RFV are as follows 
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1) Model the external membership function 1 for randomness contribution  

Suppose x is a variable denoting one of some fault features, which may result from different 

faults or fault modes. When a certain fault was simulated or really occurred in past monitoring 

process, x was observed by the corresponding sensor instrument, n data of x was recorded, 

generally n 200. Thus, statistical histogram can be constructed using these typical historical data. 

Gaussian probability density function (pdf) of x is obtained through interpolation fitting.  

There is a case in point, for fault diagnosis of a machine rotor system (the detail will be given in 

section 5), let x be the amplitude of foundational frequency (fv) of vibration acceleration (unit 

m/s
2
), which is observed by vibration displacement sensor. Suppose 200 data under fault of 

“rotor unbalance” are recorded. The fitted pdf p(x) is shown in Figure 3. 

 
 

Figure 3. The fitted Gaussian pdf 

 

The pdf p(x) needs to be transformed into a possibility density function, i.e., an external 

membership function. The specifics are shown in the following ways [7, 9]. 

Firstly, the value xp corresponding to the peak value of pdf is determined, and its membership 

degree in the external membership function is set 1. Let xL and xR be the bounds of x’s 

distribution. Since p(x) is normal distribution, so [xL, xR]=[xp-3σ, xp+3σ], where xp is mean value, 

σ is standard deviation. 
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Secondly, for interval [xL, xp], let [ , ]
iL L px x x , i=1,2,…,M and ( ) / ( 1)

iL L p Lx x i x x M . 

For interval [xp,xR], let [ , ]
iR p Rx x x , i=1,2,…,M and ( 1) ( ) / ( 1)

iR p R px x M i x x M . 

The distribution of these points in [xL, xR] is showed in Figure 4. The following M+2 nested 

intervals can be generated 
1 1 1 1

[ , ] [ , ] [ , ] ... [ , ] [ , ]
M M M Mp p L R L R L R L Rx x x x x x x x x x

 

 

…… ……

1Lx
1Rx

Rxpx
Lx

MLx
MRx

( ) / ( 1)p Lx x M ( ) / ( 1)R px x M

 

Figure 4. The distribution of points on interval [xl, xr] 

 

Obviously, these intervals are the different α-cuts of the external membership function according 

to the corresponding values of α. The greater is M, the higher is the resolution of the desired 

fuzzy variable. The value of M is chosen according to the required resolution. It is known that the 

confidence level about the generated interval[ , ]
k kL Rx x is 

( )
Rk

Lk

x

k
x

p x dx               (3) 

and the corresponding αk=1-λk.  

In this example, M=100, xp=0.1607 m/s
2
, xl =0.1496 m/s

2
, xr =0.1718 m/s

2
 σ=0.0037 m/s

2
, 

using M+2 generated nested intervals, p(x) can be transformed into the external membership 

function 1 as shown in Figure 5. 
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Figure 5. The external membership function transformed from pdf p(x) 

 

2) Model the inner membership function 2 for non-randomness contribution 

The unknown uncertainty (non-randomness) is caused by systematic error of sensor instruments, 

which can be described by inner membership function. Generally, systematic error is provided by 

manufacturer, e.g., for the vibration displacement sensor mentioned above, the manufacturer 

represents systematic error specification as xp±y%, where y=0.2% describes sensor accuracy. In 

this case, a rectangular membership function 2, can be used to model the systematic error as 

shown in Figure 6. 
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Figure 6. Rectangular membership function 

 

If the corrected data from instruments or experts’ empirical knowledge can be obtained, then the 

rectangular membership function can be revised and its shape may be no longer rectangular 

generally
 
[10]. 

3) Model RFV of fault template pattern through combining 1 and 2 

The final RFV can be determined by combining 1 and 2. At the same level α, the generated α-

cuts of 1 and 2 are [ , ]
L RE Ex x and [ , ]

L RI Ix x  respectively, where “E” and “I” denote “external 

membership function” and “inner membership function” respectively. Interval [ , ]
L RE Ex x is 

divided into the two intervals [ , ]
LE px x and[ , ]

Rp Ex x . The α-cuts { , , , }a b c dX x x x x of final RFV 

is defined by 

( )

( )

L

R

L

R

b I

c I

a b p E

d c E p

x x

x x

x x x x

x x x x              

(4) 

Therefore, A RFV can be represented using a M 5 matrix, whose row is{ , , , , }a b c dx x x x . 

Obviously, the number of calculations required will increase with the numbers of α-cuts. In real 

0.1603 0.1604 0.1605 0.1606 0.1607 0.1608 0.1609 0.161 0.1611
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
em

b
er

sh
ip

 d
eg

re
e

x
p

x
p
-x

p
*y% x

p
+x

p
*y%

2

Xu Xiaobin, Zhou Zhe, Wen Chenglin, Data Fusion Algorithm of Fault Diagnosis Considering Sensor Measurement Uncertainty

180



applications, generally, the number of row usually is set 100, thus a RFV is represented by a 

100 5 matrix [9]. Due to this simplicity, RFV could be conveniently realized through computer 

programming. 

 

b.ii  RFV model of testing patterns 

During on-line monitoring and diagnosis, considering the affects of randomness and systematic 

error, it is unreliable to judge faults by single monitoring datum unless sudden accidents happen, 

because generation of fault is a gradual change process. Therefore, it is assumed that, at interval 

t, equipment runs stably and at least m (m 60) monitoring data need to be collected by sensor 

instrument. Therefore, the method in subsection 3.2.1 can also be used to construct RFV of 

testing patterns. Comparing with the single monitoring datum or the mean value of several 

monitoring data, it is able to objectively reflect uncertainties involved in measurements of fault 

features in time interval Δt. 

 

IV. DETERMINE BPA BASED ON SIMILARITY MEAUSRE BETWEEN RFVs 

 

a. Similarity measure between RFVs 

In fault diagnosis, it is necessary to calculate matching degree between a testing pattern (TP) and 

each fault template pattern (FTP) in fault database, and then matching degree will be converted 

into BPA. If the matching degree between a PT with a certain FTP is maximal, that is to say, the 

fault about this FTP happens most likely. In this section, a similarity measure fit for RFVs is 

given to calculate matching degree such that corresponding BPA can be obtained by normalizing 

matching degree. 

Definition 1 For random-fuzzy variables A and B, the similarity measure between them is defined 

as 

( , )( , ) d A BS A B e      (5) 

where 

1
( , )

2

Li Li Ri Rin E E E E

ii

a b a b
d A B      (6) 

INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS VOL. 6, NO. 1, FEBRUARY 2013 

181



[ , ],[ , ], 1, ,
Li Ri Li RiE E E Ea a b b i M represent external confidence interval of αi-cuts of RFV A and 

B, respectively. 

Remark 1: The external membership function includes inner membership function of RFV, so it 

is enough that the external confidence interval is used to measure similarity between RFVs. 

Actually, RFV are composed by a set of its external and inner confidence intervals and the 

corresponding value α. Therefore, firstly, d(A,B) measures the difference between them, and then, 

the negative exponential function maps d(A,B) into interval [0,1] such that S(A,B) satisfies the 

following conditions of similarity measure  

C1.   0≤S (A, B) ≤1 

Proof. Because d(A,B)≥0, so 0≤e
-d(A,B)

≤1, according to (5), we have 0≤S(A,B)≤1.                         □ 

C2.   S(A, B) =1 A=B 

Proof. Necessity: if A=B, then d(A,B)=0. e
-d(A,B)

=1, so S(A,B)=1; Sufficiency: S(A,B)=1 means 

d(A,B)=0, namely,  ,
Li Li Ri RiE E E Ea b a b , so A=B                                                                            □ 

C3.   S(A, B) =S (B, A) 

Proof. Because 

1 1
( , ) ( , )

2 2

Li Li Ri Ri Li Li Ri Rin nE E E E E E E E

i ii i

a b a b b a b a
d A B d B A  

so we have S(A,B)=e
-d(A,B)

= e
-d(B, A)

=S(B,A).                                                                                     □ 

 

b. Calculate BPA using the similarity measure between RFVs 

In this subsection, an example illustrates that how to determine BPA based on similarity degree, 

and the method in [4] is also given for comparisons in following section. 

Suppose machine rotor system have 3 fault modes Fj, j=1, 2, 3. The amplitude of foundational 

frequency (fv) of vibration acceleration is still selected as fault feature. For this feature, FTP of 

every fault is constructed by using off-line method in 3.2.1. Specially, TP of F1 is constructed by 

using on-line method in 3.2.2. The every FTP and TP are all modeled as corresponding RFVs, 

denoted as respectively Aj and B, j=1, 2, 3, shown in Figure 7. 

   100 3 matrices are used to represent RFVs of Aj and B. Elements of every row of the matrix are 

two endpoints of external confidence interval of αi-cuts of RFV and αi itself, where i=1… M. 
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Figure 7. TP and Three FTPs 
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The matching degree between TP B and each FTP is 
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       (7) 

The corresponding BPA can be obtained by normalizing matching degree 
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3

1

3

1

( )
( )

( ) ( )

( )
( )

( ) ( )

j

j

j

j

j

j

F
m F

F

m

F

           (8) 

In this example, m(F1)=0.5111, m(F2)=0.3884, m(F3)=0.0527, m( )=0.0478. 

In [4], FTPs for Fj, j=1, 2, 3, and TP are all modeled by Gaussian membership functions.  FTPs 

are described as 

2

,

2
,

,

, ,

2

, ,
2

,

( )
exp

2

( ) 1

( )
exp

2

j

a j

a j
a j

F a j b j

b j b j

b j

x M

x M

x M x M

x M x M

    

(9) 

where Ma, j and Mb, j are min and max mean value of n/5 typical historical data (n typical 

historical data are divided into 5 subgroup). 

The TP for a certain fault is calculated as follows: 

2

2

( )
( ) exp

2

o
o

o

x M
x             (10) 

where, Mo is the mean value of m on-line monitoring data. 

The same typical historical and monitoring data are used to construct FTPs and PT about fv. Thus, 

the parameters in (9) and (10) are as follow 

,1 ,1

,1 ,1

0.1596 , 0.01

0.1644 , 0.02

a a

b b

M

M
        

,2 ,2

,1 ,2

0.1696 , 0.0031

0.1932 , 0.0138

a a

b b

M

M  

,3 ,3

,3 ,3

0.3247 , 0.0023

0.3387 , 0.0074

a a

b b

M

M         

0.1445 , 0.0118o oM  

The membership functions of FTPs ( )
jF x of Fj, j=1, 2, 3 and TP ( )o x of F1 about fault feature 

fv are shown in Figure 8. 

From Figure 8, we can see that the ordinate value of crossed points between TP and FTPs, 

namely, the matching degrees. It is calculated as follows: 
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Figure 8. Membership functions of fault templates and tested model 

 

( ) min max( ( ), ( ))
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jj F o
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Similarly, by using (8), the corresponding BPA can be obtained as 

m(F1)=0.4926,  m(F2)=0.2237,  m(F3)=0.0000,  m( )=0.2837. 

Comparing with the BPA obtained by (11), our BPA supports F1 more definitely, i.e., 

0.5111>0.4926. The reason for this predominance is that RFV can model randomness and 

systemic error more comprehensively. In next section, the fault diagnosis experiments of machine 

rotor system will further illustrate this predominance in data fusion-based decision-making. 

 

V. FAULT DIAGNOSIS EXPERIMENTS OF MACHINE ROTOR SYSTEM 

 

The proposed method is applied in ZHS-2 machine rotor system shown in Figure 9 [11]. A 

vibration displacement sensor (VDS) and a vibration acceleration sensor (VAS) are installed on 

the bracket of rotor to collect vibration signals in both horizontal and vertical directions. The 

collected vibration signals are inputted into HG-8902 data collector, and then processed by signal 

conditioning circuits, finally the processed signals is inputted into laptop. The fault features can 

be acquired by HG-8902 data analysis software (under environment of Labview).The structure 

diagram of data collection system is shown in Figure 10, it is obvious that, besides of the 

systematic errors of vibration sensors, signal conditioning circuit and A/D convertor are also have 
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conversion errors. The accumulation of these errors composes the systematic errors of the whole 

sensor instrument. It can be generally found in specifications of instrument provided by 

manufacturer. For VDS and VAS instruments in this experiment, their accuracies are all y= 

0.02%. 

Three typical fault of this rotor system are rotor unbalance、rotor misalignment and motor 

bracket loosening. The analyses to the large amount of experimental data show that abnormal 

vibration caused by faults will lead to increasing or decreasing of amplitudes of vibration 

frequencies. Therefore, the amplitude of frequency k fv (k fv means k times the frequency of fv, 

k=1, 2, 3) of vibration acceleration and the average amplitude of vibration displacement (AAVD) 

are selected as fault features [11]. The decision-making is made based on fusion results of several 

BPAs obtained from every fault feature. 
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Figure 9. Diagram of experiment set-up 
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Figure 10. HG8902 data collection system 

The specific steps are as follow: 
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1) Determining the frame of discernment 

The frame of discernment is Θ＝{F1, F2, F3}, where, F1=rotor unbalance,F2=rotor misalignment, 

and F3=motor bracket loosening. 

2) Off-line constructing the fault template patterns as FTP database 

12 RFVs of FTPs can be modeled according to the method in section 3.2.1, denoted as Aij, where 

i=4 represents the number of fault features, j=3 represents the number of fault modes. 

3) On-line diagnosing 

When a certain fault happens during on-line monitoring process, for 4 fault features, RFVs of 

TPs can be modeled according to the method in section 3.2.2, denoted Bi, where i=4 represents 

the number of fault features. 

The matching degrees between TP Bi and each FTP Aij is calculated by (7), Total 4 BPAs about 

4 fault features can be got by normalizing the corresponding matching degree. 

Dempster’s rule of combination is used to fuse these i pieces of BPAs. Fault diagnosis is made 

based on fusion results. Generally, the determined fault mode needs to satisfy following 

conditions [1, 4], namely, the decision rules: 

1) The BPA of the determined fault mode must be maximal.  its value should be larger than a 

given threshold γ, here γ is set 0.6 empirically; 

2) m(Θ) must be smaller than a given threshold Δ, here Δ is chosen as 0.3 empirically; 

3) The difference between BPA of the determined fault type and BPA of other fault modes 

must be larger than a given threshold ξ, here ξ is set 0.15 empirically. 

The experimental results are listed in table 1. The diagnosis result based on single BPA and 

fusion results of 4 BPAs are all given. From this table, it can be seen that we cannot correctly 

diagnose fault only based on single BPA obtained from the corresponding fault feature. But 

according to the fusion results of all BPAs, we can correctly judge faults, namely, the diagnosis 

results are identical with the current fault state of rotor system. Moreover, comparing with the 

fusion results by using method in [4] (listed in table 1), the proposed method can correctly 

diagnose fault while the method in [4] cannot, e.g., for F2 in table 1. For the diagnosis of F1 and 

F3, the both methods can all make correct decisions. However, the BPA of the determined fault 

obtained by the proposed method is large than that in [4]. The larger the BPA is, the more 

confident the decision-making is. 
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Furthermore, in order to further validate the effectiveness of the proposed method, the procedures 

of on-line fault simulations (step 3) is repeated for 100 times. The experimental results are given 

in table 2. The values outside parentheses are the times of correct diagnosis for both methods, and 

the values in parentheses are the times that one method is more confident than counterpart. From 

the table we can see that, for F1 and F3, the both methods can all effective in 100 times of 

repeated experiments. However, the proposed method is more confident than method in [4] 

except for twice of diagnostic experiments of F3. For F2, the method in [4] hardly makes correct 

decisions, but the proposed method can diagnose fault F2 in the entire repeated experiments. 

 

Table 1: The experimental results 

 

Fault mode  
BPA Diagnosis 

results m(F1) m(F2) m(F3) m(Θ) 

rotor unbalance F1 

Fault 

features 

fv 0.5396 0.3630 0.0223 0.0751 Uncertain 

2fv 0.5323 0.0177 0.0129 0.4372 Uncertain 

3fv 0.4912 0.0563 0.4362 0.0164 Uncertain 

AAVD 0.0136 0.1029 0.3429 0.5405 Uncertain 

RFV fusion 0.8631 0.0466 0.0889 0.0015 F1 

Method in [5] 0.6779 0.1842 0.0842 0.0537 F1 

rotor misalignment F2 

Fault 

features 

fv 0.5468 0.3679 0.0226 0.0628 Uncertain 

2fv 0.0191 0.5665 0.4128 0.0015 Uncertain 

3fv 0.1890 0.2796 0.2852 0.2462 Uncertain 

AAVD 0.1409 0.3298 0.0001 0.5293 Uncertain 

RFV fusion 0.0294 0.8904 0.0801 0.0001 F2 

Method in [5] 0.0002 0.5975 0.4022 0.0001 Uncertain 

motor bracket loosening 

F3 

Fault 

features 

fv 0.0657 0.0976 0.5138 0.3229 Uncertain 

2fv 0.0122 0.3669 0.5039 0.1171 Uncertain 

3fv 0.4547 0.0603 0.4676 0.0174 Uncertain 

AAVD 0.2647 0.2111 0.0001 0.5241 Uncertain 

RFV fusion 0.1135 0.0698 0.8146 0.0021 F3 

Method in [5] 0.1713 0.0254 0.7803 0.0230 F3 
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Table 2 Compared results of repeated experiments 

 

 rotor unbalance rotor misalignment motor bracket loosening 

The proposed method 100 (100) 100 (100) 100 (95) 

Method in [5] 100 (0) 22 (0) 100 (5) 

 

In conclusion, RFV considers the overall uncertainties of sensor measurement. Moreover, the 

new similarity measure is appropriate to RFV so that more precise matching results can be 

obtained, and then the fusion results are also more reasonable. 

 

VI. CONCLUSIONS 

 

In this paper, random-fuzzy variable, which can represent randomness and unknown systematic 

error simultaneously, is used to express and deal with the uncertainty in the procedure of sensor 

measurement. A new similarity measure appropriated for RFVs is presented for matching FTP 

and TP extracted from sensor data with uncertainty. The matching degree can be transformed into 

BPA in evidence theory by normalization. Then, Dempster’s rule of combination is used to fuse 

several BPAs provided by many sensor instruments. The fault diagnostic experiments of machine 

rotor system illustrate that the proposed method outperforms the method in [4] which never 

considers the overall uncertainties. In a word, the experimental results show that the proposed 

method can enhance accuracy and reliability of data fusion-based diagnosis system. 
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