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Abstract- Linear Quadratic Regulator (LQR) is widely used in many practical engineering fields due to 

good stability margin and strong robustness. But there is little literature reports the technology that has 

been used to control the flying wing unmanned aerial vehicles (UAV). In this paper, aiming at the 

longitudinal static and dynamic characteristics of the flying wing UAV, LQR technology will be 

introduced to the flying wing UAV flight control. The longitudinal stability augmentation control law 

and longitudinal attitude control law are designed. The stability augmentation control law is designed 

by using output feedback linear quadratic method. It can not only increase the longitudinal static 

stability, but also improve the dynamic characteristics. The longitudinal attitude control law of the 

flying wing UAV is designed by using command tracking augmented LQR method. The controller can 

realize the control and maintain the flight attitude and velocity under the condition without breaking 

robustness of LQR. It solves the command tracking problems that conventional LQR beyond reach. 
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Considering that some state variables of the system are difficult to obtain directly, a control method that 

called quasi-command tracking augmented LQR is designed by combing with the reduced order 

observer, it retains all the features of command tracking augmented LQR and more suitable for the 

application of practice engineering. Finally, the control laws are simulated under the environment of 

Matlab/Simulink. The results show that the longitudinal control laws of the flying wing UAV which are 

designed based on LQR can make the flying wing UAV achieve satisfactory longitudinal flying quality. 

 

Index terms: Flying wing UAV, UAV modeling, augmented LQR method, longitudinal stability augmentation, 

longitudinal attitude control, dimension reduction observer. 

 

 

I. INTRODUCTION 

 

Because flying wing UAV adopts the technology of wing-fuselage blending, horizontal tail and 

vertical tail of the conventional configuration are canceled, the plane looks like a lifting surface. 

It not only improves the lift-to-drag ratio, reduces the Radar Cross Section, but also enlarges the 

range of flight envelope and cuts down on energy consumption [1][2]. But this exclusive 

pneumatic layout has brought many problems to the design of flight control system. On the one 

hand, because of the aspect ratio of the flying wing UAV is large and the fuselage is short, there 

is no tail plane or horizontal tail, which results in the decrease of the longitudinal static stability 

and the control effectiveness. On the other hand, the vertical tail of the aircraft is canceled made 

the transverse lateral damping of aircraft declined, meanwhile we need to add new control 

mechanism to achieve the yaw of plane. Undoubtedly these will increase the difficulty in 

designing the flight control law [3][4]. 

In the method of multivariable feedback control system design, the LQR technology is widely 

used in many practical engineering fields [5-11], especially in the control of conventional layout 

fixed-wing UAV and unmanned helicopter [12-16], which has many advantages such as more 

than 60°phase margin, infinite amplitude margin and strong robustness. In literature [12][13], it 

has realized the stability augmentation control of conventional layout fixed-wing UAV by using 

conventional LQR method. It has effectively solved the problems that UAV is disturbed by air 

current easily and has poor flight stability. The shortage is that there are large numbers of 
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feedback gain to seek, and it is not convenient for the application of practical engineering. The 

explicit and implicit model following technology, based on linear quadratic regulator theory, are 

respectively applied to design unmanned helicopter and fixed-wing UAV autopilot in literature 

[14][15], although the method has achieved the attitude control and hold of UAV, it needs the 

high-precision reference model, and the controller structure is also more complicated. Literature 

[16] presents a combined control method based on active modeling and traditional LQG control 

theory，which can be effectively adapted to model uncertainty and applied to flight control of 

unmanned helicopter, the result shows that the method can ensure the flight stability of the 

unmanned helicopter in uncertain wind environment, however the shortage is that LQG control 

increases the complexity of the control system owing to estimate of the whole state variables, but 

it needn’t in  practical engineering. 

At present, the design of flight control law of flying wing UAV mainly adopts classic control 

theory such as the root locus method and frequency domain analysis method[17]. Although the 

method is reliable and intuitive, there will be heavy workload by using classic control methods to 

design feedback loop, and sometimes it’s difficult to satisfy the design requirements for complex 

flight control system with multiple inputs multiple outputs and strong coupling. LQR technology 

with its strong robustness has been successfully and widely used in the fields of the fixed-wing 

UAV, unmanned helicopter and other engineering. But there are no reports on the flight control 

of the flying wing UAV. Therefore, the LQR technology with its good robustness will be 

introduced into the flying wing UAV flight control in this paper, and the longitudinal stability 

augmentation control law and longitudinal attitude control law of the flying wing UAV will be 

designed respectively. The design of stability augmentation control law is accomplished by using 

output feedback linear quadratic method. It can not only increase the longitudinal static stability, 

but also improve the dynamic characteristics. Meanwhile, the numbers of feedback gain have 

been reduced compared with the conventional LQR state regulator. It is convenient for the 

applications of practical engineering. A special control system augmented method and 

conventional LQR method are combined together to obtain a command tracking augmented LQR 

method that can used control the attitude of the flying wing UAV. The controller has strong 

robustness and simple structure, it realizes tracking control with zero static error of the flight 

velocity and pitch angle, thus it solves the command tracking problems that conventional LQR 

regulator beyond reach. Considering that some state variables of the system are difficult to obtain 
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directly (e.g. angle of attack), a control method that called quasi-command tracking augmented 

LQR is designed by combing with the reduced order observer, it retains all the features of 

command tracking augmented LQR method and more suitable for the application of practical 

engineering. 

Finally, the longitudinal model of the flying wing UAV will be established and the control 

method will be simulated under the environment of Matlab/Simulink. The results show that the 

longitudinal control laws for the flying wing UAV based on LQR can make the flying wing UAV 

achieve satisfactory longitudinal flying qualities. 

 

II. LONGITUDINAL MODELING OF THE FLYING WING UAV 

 

a. Control surfaces of the flying wing UAV 

Flying wing UAV has no horizontal stabilizer and vertical tail, so control mechanism of the 

aircraft can only be installed on the trailing edge of the wing as shown in figure 1.  

 

Figure 1.  The high-altitude long-endurance flying wing UAV     

 

There is a pair of elevators in the inner side of the trailing edge of the UAV, which is used to 

control pitch and lift of the plane. The laterals of elevator are provided with symmetrical elevons, 

which are used for lift enhancement and rolling motion; A new kind of control mechanism named 

split-drag-rudder is adopted to control the lateral motion of the UAV. Two split-drag-rudders are 

on the tail edge near the tip wing, which are far from the symmetry plane. When the split-drag-

rudder open up a certain angle in one side, the drag-force will be increased on the same side and 

get an unbalanced yawing moment, which lead the UAV yawing to the same side. While when 

the two split-drag-rudders are opened up on both two sides, the drag force will be increased 
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noticeably. So the split-drag-rudder can be used to the velocity control of the UAV, such as in 

approaching and landing, air refueling and etc. Due to the split-drag-rudders are mounted on the 

tail edge near the tip wing, the distance between the control mechanism and gravity of the UAV 

is far, the effects on longitudinal pitching motion of the UAV by drag rudder can’t be ignored, so 

it should be taken into consideration while modeling. 

 

b. Longitudinal motion equation of the flying wing UAV 

Considering the UAV motion is a very complex dynamic process, it is a nonlinear time-varying 

system in the flight process, the whole movement is influenced by various factors. For example, 

earth curvature, atmospheric motion, elastic deformation of the plane, acceleration of gravity and 

so on. It will be very complex to take various factors into account, which makes the modeling 

hardly realized. Therefore, we need to make the following assumptions of the flying wing UAV 

motion system in the modeling process [18][19].  

(1) The UAV is rigid and the quality is constant. 

(2) The earth fixed axis is regarded as an inertial coordinate system 

(3) The acceleration of gravity g is a constant; 

(4) The plane XOZ of the body coordinate system of the flying wing UAV is symmetric, not only 

the geometry appearance of the UAV is symmetric, but also the internal quality distribution. 


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Figure 2.  Force analysis of the flying wing UAV longitudinal motion 

 

The longitudinal dynamics and the kinematics model of the flying wing UAV are built based on 

the above assumptions. Longitudinal stress analysis to the UAV (select a state to climbing 

process of the UAV) is shown as in Figure 2. Longitudinal motion equation of the flying wing 

UAV can be described as: 
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Where m is the quality of the UAV, life force L and drag force D are aerodynamic forces of the 

UAV, and pitching moment Mz is aerodynamic moment, T is the thrust of the UAV, φt is the 

intersection angle between the thrust T and the body axis x, Iz is the yaw moment of the inertia, 

 is the path angle of the UAV. Aerodynamic force and aerodynamic moments are nonlinear 

function about the speed v, the atmosphere density  of the height of flight, pitch rate q , angle of 

attack and the rudder deflection angle. The nonlinear functions are expressed according to the 

aerodynamic principle as follows : 
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where S is the wing reference area, c is the wing mean geometric chord, 0DC , DC , v
DC  etc are the 

aerodynamic derivatives of the UAV, δe is the elevator angle, δd is the split drag rudder angle. 

Thrust T of the UAV is a nonlinear function about the atmosphere density, the flight velocity and 

throttle opening. The expression is:  

                                                                               ( , , )tT T v                                                                     (3) 

where δt is the throttle opening. Substitute above formula (2) (3) into formula (1), we can get 

complete longitudinal mathematical model of the flying wing UAV. Since the model consists of 

nonlinear differential equations, it is not convenient to analysis the system and design the control 

law. Therefore, we select a typical flight status to linear processing, which is based on the 

disturbance theory and the coefficient freezing method, the differential equations with constant 

coefficients of the system are: 
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The  0 0 0 0, , ,v T   are known as parameters of typical flight status, longitudinal modeling of the 

UAV is completed. 

 

III. THE FLYING WING UAV LONGITUDINAL STABILITY 

AUGMENTATION CONTRAL 

 

As the fuselage of the flying wing UAV is short, it results in  the control effectiveness of elevator 

and elevon on the tail edge of the UAV low. In order to improve the maneuverability, the static 

stability can be properly relaxed. The aerodynamic center will shift backward, which may 

weaken the UAV’s longitudinal static stability when the UAV flying at transonic or at high angle 

of attack. As a compromise between the longitudinal stability and maneuverability, the aircraft's 

center of gravity can be configured at the position between the aerodynamic center at high angle 

of attack and high-speed and the aerodynamic center at low-speed and low angle of attack. 

Therefore, the static stability can be maintained at low speed and low angle of attack, and the 

instability at high speed and high angle of attack is still acceptable. As a result, only at high-

speed and high angle of attack, longitudinal stability augmentation is needed. 

 



Yibo LI, Chao Chen, Wei Chen. RESEARCH ON LONGITUDINAL CONTROL ALGORITHM 
                     FOR FLYING WING UAV BASED ON LQR TECHNOLOGY 
 
 

2162 

a. Output feedback linear quadratic regulator 

Although the traditional linear quadratic regulator can achieve stability augmentation of the UAV, 

it needs all the state variables information of the system and heavy workload, which is not 

conducive to engineering practice. Therefore, there is output feedback linear quadratic method to 

design the longitudinal stability augmentation control law of the flying wing UAV. Combined 

with section Ⅱ.b, consider the following three rudder loop models: 

Elevator: 20

20e eu
S

 


, throttle thrust: 20

20t tu
S

 


, and split-drag-rudder: 40

20d du
S

 


.  

The longitudinal augmented state equation and output equation of the flying wing UAV are: 

                                                                               
x Ax Bu

y Cx

 
 


                                                                (5) 

Where   Te t dx v q             is the system state vector,  Te t du u u u     is the 

control vector, and  Ty v q       is the output of the UAV. Choose form for output 

feedback:  

                                                                              u Ky                                                                   (6) 

where K is the feedback gain matrix of the corresponding dimension. Substitute (6) into the above 

formula (5), we obtain the following state equation of closed loop system: 

( )x A BKC x A x                                                     (7) 

The purpose of designing the stability augmentation control law is to adjust the UAV state, so 

that any errors of the initial conditions can be preserved to zero, which can ensure the flight 

stability. Thus we can minimize the following quadratic cost function by selecting the control 

input u: 

                  
0

1
( )

2
T TJ x Qx u Ru dt


                                                   (8) 

where, Q and R are the weighting matrices, Q is the semi-positive definite symmetric matrix and 

R is the positive definite symmetric matrix. The selection of Q and R can be compromised 

between the adjustment speed and control function of state variables. Greater control weighting 

matrix R can obtain smaller control ability, whereas greater state weighting matrix Q can speed 

up the adjustment of the state variable. The choice of Q and R also affects the pole position of the 
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closed-loop system. The anticipant time domain characteristics of the closed-loop system can be 

achieved by reasonable weight matrix configuration. Substitute (6) and (5) into the above formula 

(8), we can easily obtain: 

0

1
( )

2
T T TJ x Q C K RKC xdt


                                          (9) 

It can be concluded that simply selecting the appropriate feedback matrix K can obtain the aim of 

minimizing quadratic cost function from (9), which converts a dynamic optimization problem 

into a static problem which is easy to be solved. 

Assume that a positive definite symmetric matrix P can be found to build a Lyapunov function 

of x. If the function satisfies the Lyapunov stability theorem, the closed-loop system (7) is 

asymptotically stable. The Lyapunov function can be defined as：  

( ) TV x x Px                                                           (10)  

Combining (7) we take the derivative of V(x):   

                                                                 ( ) ( )T TV x x A P PA x                                                   (11) 

Then the following equation can be obtained by using the integrand of (9) and the property of the 

Lyapunov function V(x): 

   
( )

( ) ( )
T

T T T T Td x Px
x A P PA x x Q C K RKC x

dt
                            (12) 

Because we have assumed that the closed-loop system is asymptotically stable, the quadratic cost 

function can be written as:  

                                           
1 1 1

(0) (0) lim ( ) ( ) (0) (0)
2 2 2

T T T

t
J x Px x t Px t x Px


                         (13) 

From (13), we can calculate the quadratic cost function of the closed-loop system as long as the 

initial condition x(0) are known, and this is irrelevant to other states under feedback control (6). 

As (12) must satisfy all the initial conditions, all the state trajectories x(0) satisfy the following 

Lyapunov equation: 

                                                      * 0T T Tf Q C K RKC A P PA                                    (14) 

From (14) we can find that if matrix Q and matrix K are given, auxiliary matrix P can be 

determined by Lyapunov function, and it is independent on the state of the system. 
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In conclusion, in terms of any feedback matrix K with fixed value, if there is a non-negative 

definite symmetric matrix P which satisfies the Lyapunov equation (14) and the closed-loop 

system is stable, the quadratic performance index is relevant to the initial condition x(0)and the 

matrix P, which is independent of system states. 

To simplify the solving of feedback gain K, tr(AB)=tr(BA), which describes the relationship of 

matrix trace, is introduced. Thus (13) can be rewritten as:  

 
1

[ (0) (0)]
2

TJ tr Px x                                                      (15) 

Visibly, under the constraint condition of state equations (7), the problem which obtains the 

feedback matrix K by minimizing the quadratic cost function (9) is converted to the problem 

which solves feedback matrix K by minimizing (15) under (14) with the auxiliary symmetrical 

matrix P. But seen from (15), x(0) xT(0) is depend on initial conditions, which are not expected to 

get because initial states may not be pre-determined in many practical engineering. Therefore, we 

assume that the initial state is evenly distributed in the unit sphere, namely x(0) xT(0) is the unit 

matrix. So the problem of solving performance indicators (15) is converted to solving the 

expectation ( )E J for performance indicators, which evades the choice of the initial value. 

Next, we use the solving method of the extreme value problem with constraint conditions to 

solve matrix K and matrix P [20]. First, we introduce the Lagrange matrix factor 4 4R  , and 

then construct Hamilton function as:  

                             )( ftrFH                                                       (16) 

where )]0()0([ TxPxtrF  . We make the variation to (16) respectively for K, P, λ  and make them 

zero, then obtain the following equations: 

0

(0) (0) 0

0

T T T

T T

T T T

H
RKC C B P C

K
H

A A x x
P
H

Q C K RKC A P PA

 

 



 

 

   
     
      

                                 (17)  

The three equations above are necessary conditions for the solution of output feedback linear 

quadratic regulator. R is a positive definite matrix and non-singular, so the output feedback 

matrix K can be obtained as: 
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11 )(  TTT CCCPBRK                                              (18) 

Finally, we obtain the longitudinal stability augmentation control law of the flying wing UAV: 

1 1( )T T Tu Ky R B P C C C Cx       

The longitudinal stability augmentation control system structure of the flying wing UAV 

designed by output feedback linear quadratic regulator is illustrated in Figure 3. 

A

B  C
x x

K

u

 

Figure 3.   Block diagram of the control system designed by 

   output feedback linear quadratic regulator method 

 

Simplex algorithm or iterative method can be used when we solve the feedback gain matrix K 

with computers [21][22]. The specific steps of iterative method are shown as followings: 

Step 1: Parameter initialization 

Set 0i  , then make matrix Ai=A-BKiC asymptotically stable by selecting the initial gain Ki 

with the eigenvalue configuration method. 

Step 2: Iterative process 

Make the i-th iteration, and solve Pi ,  λi and cost function )]0()0([21 T
ii xxPtrJ  with following 

Lyapunov equations:  

*

*

0

(0) (0) 0

T T T
i i i i

T T
i i i i

Q C K RK C A P PA

A A x x 





    


  
 

The correction value of the feedback matrix K is calculated through, ΔK=R-1BTPiλiC
T(CλiC

T)-

1-Ki and the amended feedback matrix is Ki+1=Ki+εΔK. The ε is chosen to make matrix Ai+1    

asymptotically stable, in the meantime, make Ji+1 ≤ Ji. When Ji+1 is close enough to Ji, go to 

the step 3, otherwise set i=i+1 and go to the step 2 to continue the calculation. 

Step 3: Valuation 

          Set K=Ki and J= Ji , then the iteration ended. 
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IV.   THE FLYING WING UAV LONGITUDINAL ATTITUDE CONTROL 
 

In previous section, we have designed the longitudinal stability augmentation control law of the 

flying wing UAV with the use of output feedback linear quadratic technology, and completed the 

longitudinal stability augmentation control of the UAV. On this basis, we will design the flying 

wing UAV longitudinal attitude control law with an command tracking augmented LQR method, 

which is the combination of a special control system augmented method and the conventional 

LQR. Given the angle of attack in the engineering practice is hard to be directly detected, a quasi-

command tracking augmented LQR method will be designed with the combination of reduced-

dimension observer to solve this problem. 

 
a. Command tracking augmented LQR control method 

Although conventional LQR and output feedback linear quadratic regulator can realize the 

stability augmentation of the system in a certain equilibrium state, it is difficult for them to 

achieve the tracking of the input instructions. Therefore, in this paper, the following augmented 

LQR has been considered to design the longitudinal attitude control law of the flying wing UAV. 

All the state variables of the system are assumed to be detected. 

Longitudinal state equation and output equation of the flying wing UAV after stability 

augmentation are known as: 

x A x B u

y C x

 



  





                                             (19) 

Set the control input  Tt eu u u   , and the output  Ty v    . The control law u should be 

designed to make the system’s output y can be tracked on a given input signal: r(t)=C×1(t), 

where C is a constant matrix of corresponding dimensions. Set the output error of the system is 

e(t)=r(t)-y(t) . The differentiation of (19) is: 

* *

*( )

x A x B u

d r y
e y C x

dt

  

 

    

  

  
              (20) 

Set the augmented state vector
TT Tx x e     , and get the following augmented system:  

                                                                         x Ax Bu                                                                 (21) 
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Whereu u  , 
*

*

0

0

A
A

C

 
 
  

 ,
*

0

B
B

 
 
  

 . To keep all the state variables of the augmented system being 

zero, that is 0
TT Tx x e     , linear quadratic regulator is designed for (21). It will ensure the 

system’s output zero static error, so as to achieve the purpose of tracking given input signal. Set 

the quadratic cost function of formula (21):  

0

1
[ ]

2
T TJ x Qx u Ru dt



                                                    (22) 

Where Q is a positive semi-definite symmetric weighting matrix of corresponding dimension, and 

R is a positive definite symmetric weighting matrix. The control law obtained with LQR method 

is: 

1 Tu R B Px Kx                                                           (23) 
where K  is constant state feedback gain, and P is positive definite symmetric matrix. It is 

obtained by the following Riccati equation: 

 1 0T TPA A P PBR B P Q        

Expressing K  as partitioned matrix according to x  and e , (23) can be rewritten as follows: 

 x e x e

x
u u Kx K K K x K e

e

 
      

 
 

                                      (24) 

By integrating both sides of (24), we can obtain that longitudinal attitude control law of the flying 

wing UAV: 

0
( ) ( ) ( )

t

x eu t K x t K e t dt                                                   (25) 

The flying wing UAV longitudinal attitude control system structure designed by the method of 

command trace augmented LQR is illustrated in Figure 4: 

*A

*B  *C
x x



xK

eK

u

r
e

 
Figure 4.  Block diagram of the control system designed by 

      command tracking augmented LQR method 
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It can be seen from Figure 4 that the output y of the model is feedback into the input of the 

controller, and then get the error signal e(t) after being subtracted with a given input command. 

Because the e(t) passes through the integrator, it can be judged that this control method can 

eliminate the steady-state error of the system. Furthermore, this controller not only uses all the 

state variables of the system, but also the output information. Therefore, it will predictably have a 

good tracking effect. 

 

b. Quasi-command tracking augmented LQR control method 

When designing controller with the command tracking augmented LQR method, all the state 

variables of the system have to be detected. However, some state variables are difficult or even 

impossible to be directly detected in practical engineering applications, such as the angle of 

attack. To this end, there is a quasi-command tracking augmented LQR method designed with 

reduced-order observer. The specific process is discussed as follows. 

Because the system (19) is completely observable, there must exist a linear transformation 

x Tx  which divides the state variables into two parts: one cannot be detected, the other can. 

Here the transformation matrix
1

0
*

Z
T

C


 

  
 

is selected, in which 0Z should ensure that T is non-

singular. The formula (19) will be transformed and divided as follows:  

                                                                         
x Ax Bu

y Cx

  





                                                                (26) 

where  1 2

T
x x x , 1x   is the state vector that cannot be detected, and 2 [ ]x v q     is 

the state vector that can be detected.  * 0C C T I  , 1 * 11 12

21 22

A A
A T A T

A A
  

  
 

, 1 * 1

2

B
B T B

B
  

  
 

 , 2y x . formula 

(26) can be written as:  

                                                               1 11 1 12 2 1

21 1 2 22 2 2

x A x A x B u

A x x A x B u

   


  




                                   (27) 

Set 12 2 1U A x B u  , 2 22 2Y x A x B u   , (3-9)can be rewritten as:  

                                                               1 11 1

21 1

x A x U

Y A x

  





                                                  (28) 
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U and Y are rectifiable based on known u and directly obtained 2x via y . Thus the state 

reconstruction of the subsystem to be observed can be realized simply by designing a full-order 

observer for (28). The full-dimensional observer designed by (28) is as follows: 

                                                  1 11 21 1
ˆ ˆ( )e ex A K A x K Y U   

                                              (29) 

Where 1̂x is the estimated value of 1x , eK is the output error feedback matrix of state observer. By 

substituting U and Y into (29), we obtain: 

                                            1 11 21 1 12 22 1 2
ˆ ˆ( ) ( ) ( )e e e ex A K A x A K A y B K B u K y                    (30) 

To eliminate y , the variable 1
ˆ ˆ

ex K y    is introduced and substituted into (30), we obtain: 

                              11 21 12 22 11 21 1 2
ˆ ˆ( ) [( ) ( ) ] ( )e e e e eA K A A K A A K A K y B K B u        


    (31) 

Finally, combing with 1
ˆ ˆ

ex K y   , we obtain the estimated value of the entire state vector x  as 

follows: 

                                                     1

2

ˆˆ ˆˆ
0

ee
I Kx K yx y

Ix y

 
             

       
                                      (32) 

Transforming (32) back to the original system, the state estimated value of the system (19) is 

ˆx̂ Tx . 

As can be seen from (31) and (34), as long as the output error feedback matrix of the state 

observer eK is obtained, it will be able to complete the design of reduced order observer. The 

selection of the matrix eK will directly affect the convergence rate of the error 1e , where 1 1 1̂e x x  . 

For single-input systems, eK is generally obtained via the dual relationship between state 

feedback and state observer. But for complex multi-input system, it will be more complex to 

solve the state feedback matrix by pole assignment method. To this end, we choose conventional 

LQR method to obtain eK . Firstly, the dual system of formula (28) is written as:  

                                                                       
* * *

1 11 1 21

* *
1

T Tx A x A U

Y x

  





                                                  (33) 

Then we design linear quadratic regulator for (33), and solve the following Riccati equation: 

                                                           1
11 11 21 21 0T TPA A P PA R A P Q                                          (34) 
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The feedback gain matrix can be obtained as * 1
21K R A P  . Finally, we transpose matrix *K and 

obtain 1
21( )

T T T
eK K PA R    . 

Through the design of the reduced order observer, the state variable  of the system that cannot 

be detected can be estimated. So command tracking augmented LQR control method can be 

adopted to design the longitudinal attitude control law of the UAV. We still set K  as the 

augmented LQR feedback matrix of the system (21) against the corresponding quadratic cost 

function (22). Express K into block matrix 
1 2x̂ x eK K K K   

  according to 1̂x , 2x  and e. Then 

the longitudinal attitude control law of the flying wing UAV can be obtained as: 

                                                      
1 2ˆ 1 2 0
ˆ( ) ( ) ( ) ( )

t

x x eu t K x t K x t K e t dt                                        (35) 

The structure of the flying wing UAV longitudinal attitude control system that designed by the 

quasi-command tracking augmented LQR control method is illustrated in figure 5. 



12 22eA K A

B C

A

eK

T

1 2eB K B

11 21eA K A

T

2 ,x y

cC

 2 , ,x v q   

( , )yy v  

x x

r

̂  1
ˆx̂   1 ˆx̂ 

u

1̂x
K

eK

2xK

e

u

 

Figure 5.  Block diagram of the control system designed by 
  quasi-command tracking augmented LQR method 

 

V.   DESIGN EXAMPLE 

In this section, the longitudinal stability augmentation control law and the longitudinal attitude 

control law of the flying wing UAV will be simulated. Now we research on the longitudinal of 

the high-altitude long-endurance flying wing UAV, and select an altitude at 2000m, Mach 0.805 
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as the typical state for analysis. The flying wing UAV is linearized in the flight state; the 

augmented state equation and output equation are obtained as follows: 

m m m m

m m m

x A x B u

y C x D u

 
  


                                              (36) 

Where  Tm e t dx v q            ，  Tm e t du u u u     

0.0127 6.2136 0 9.3718 0.0058 0.111 0.7384

0.004 1.9889 1 0.0411 0.0032 0.0002 0

0.0024 6.3838 2.4646 0 0.2437 0 0.3132

0 0 1 0 0 0 0

0 0 0 0 20 0 0

0 0 0 0 0 20 0

0 0 0 0 0 0 20

mA

 
 
 
 
 
 
 
 
 
 
 
 

 
    
   







0 0 0

0 0 0

0 0 0

0 0 0

20 0 0

0 20 0

0 0 40

mB 

 
 
 
 
 
 
 
 
 

1 0 0 0 0 0 0

0 57.3 0 0 0 0 0

0 0 57.3 0 0 0 0

0 0 0 57.3 0 0 0

mC 

 
 
 
 
  

 
0 0 0

0 0 0

0 0 0

0 0 0

mD 

 
 
 
 
  

 , 

The eigenvalues of the open-loop system according to formula (36) are : λ1=-4.5775, λ2=0.4419, 

λ3,4=-0.0665±0.359i, λ5,6,7=-20, where λ1,2 are the corresponding characteristic roots of 

longitudinal short period mode of the flying wing UAV, and λ3,4 are the corresponding 

characteristic roots of long period mode. These four eigenvalues play a decisive role in the 

longitudinal movement of the UAV. When the UAV is subject to external disturbance or given 

input, the changing rule of longitudinal various parameters over time is the superposition of the 

two motion modes. λ5, 6, 7 are the poles of three rudder loops. When the open-loop system is 

disturbed by 1°angle of attack, the response curves of the UAV longitudinal parameters are 

shown in Figure 6. 
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              (a) The flight velocity response curve                 (b) The angle of attack response curve 
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               (c) The pitch rate response curve                        (d) The pitch angle response curve 

Figure 6.  The disturbance response curve of the flying wing UAV before stability  

 

Figure 6 shows that the response curves of the parameters are diverging after the UAV is 

disturbed, because there exists the positive root in the UAV short period mode which is caused 

by the flying wing UAV longitudinal static instability. Therefore, it is essential to conduct 

longitudinal stability augmentation control for the flying wing UAV. 

The longitudinal stability augmentation control law of the UAV，can be designed as u=Ky by 

use the output feedback linear quadratic regulator, where 3 4K R  . In order to get a satisfying 

stability augmentation effect, the appropriate weighting matrices Q and R augmentation should 

be firstly selected before the output feedback by LQR application. Considering that the UAV 

longitudinal static instability will lead to the short period mode of the UAV diffuse, in the 

quadratic cost function, the state Δα2 andΔq2 which are closely relevant to short period mode 

should be weighted by element qα of the weighting matrix Q if we want to obtain the short period 

mode with a satisfying stability. In the long period mode, under damping can be seen from the 

characteristic values λ3, 4, it is necessary for the state Δv2 and Δθ2 which are closely relevant to 

the long period mode, to be weighted by the element q b of the weighting matrix Q. As the 

extended state variables are not discussed, there is no need to weight them. As a result, the 

weighting matrix Q can be rewritten as Q=diag{qb,qa,qa,qb,0,0,0}. In terms of R, the form of R=ρ

×I is used to prevent oversize control input. Where  is the design parameter and I  is a unit 

matrix of corresponding dimension. 

After selecting and checking repeatedly, it can be concluded that the longitudinal stability 

augmentation of the UAV will achieve the best when Q=diag{50,10,10,50,0,0,0} and ρ=1. The 



INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS VOL. 6, NO. 5, DECEMBER 2013 
 
 
 

2173 

optimal feedback matrix K is obtained as follows by the use of the iterative solution method 

mentioned in section Ⅲ:  

1.6073 22.8329 23.3958 26.5004

7.2136 10.1877 0.9967 14.1970

3.2225 2.4844 2.4463 7.6770

K

    
   
   
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Figure 7.   The changing curve of the quadratic cost function J 

 

The changing curve of quadratic cost function during iterative process is illustrated in Figure 7. 

The eigenvalues of the closed-loop system after stability augmentation are λ1,2=-1.526±0.764i, 

λ3,4=-10.437±9.01i, λ5=-5.884, λ6=-14.657, λ7=-20. When the closed-loop system is disturbed by 

1°angle of attack, the response curves of the UAV longitudinal parameters are shown in Figure 

8.It can be seen from Figure 8 and the closed-loop system characteristic roots, the longitudinal 

dynamic quality of the flying wing UAV after stability augmentation has improved significantly. 
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(a).The flight velocity response curve             (b).The angle of attack response curve 
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                 (c).The pitch rate response curve                    (d).The pitch angle response curve 

Figure 8.  The disturbance response curve of the flying wing UAV after stability augmentation 

 

We have achieved the stability augmentation control, the longitudinal attitude control will be 

completed based on it. In order to verify the two kinds of attitude control methods mentioned in 

the third section, here we only control the flight velocity and the pitch angle. The stability 

augmented Δv and Δθ are chosen as the system output and ut, ue are chosen as the system control 

input. The two augmented LQR control methods mentioned in the third section are applied to 

design the attitude control law ut and ue, so that the command tracking of the flight velocity and 

pitch angle can be achieved. It is assumed that all the states of the system are measurable when 

we use command tracing augmented LQR method to design the control laws. While the angle of 

attack which is assumed immeasurable can be estimated by the reduced order observer when the 

command tracking augmented LQR method is adopted to design the control laws. 

The state equation and output equation of the flying wing UAV after stability augmentation are： 

( ) ( ) ( )

( ) ( )

x t A x t B u t

y t C x t

 



  





                                           (37) 

Where  Te tx v q          ,  Tt eu u u   ,  Ty v    . According to the methods in 

Section Ⅳ.a, equation (37) can achieve a new augmented state equation： 

x Ax Bu                                                            (38) 

Select quadratic cost function (22) and design the linear quadratic regulator for (38). After 

selecting and checking repeatedly, it can be concluded that the command trace will achieve the 

best when R=diag{1,1}, Q=diag{20,20,20,20,1,1,500,2000}. The optimal feedback matrix K is 

obtained as follows： 
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14.59 90.15 90.17 380.32 4.77 0.012 7.89 185.56

27.22 62.95 8.57 116.62 0.018 3.62 11.75 124.75

t t t t t t t t

ve t

e e e e e e e e

ve t

u u u u u u u u
v a q e e

u u u u u u u u
v a q e e

k k k k k k k k
K

k k k k k k k k




  

  

      

      

 
 
  
   


   

    

    


 
 

 

Finally, the flying wing UAV flight velocity and pitch angle control laws are designed by the 

command tracking augmented LQR method： 

t t t t

t t t t

ve t

e e e e

e e e e

ve t

u u u u
v t v a q

u u u u
e t e v e

u u u u
e v a q

u u u u
e t e v e

u u k v k a k q k

k k k e dt k e dt

u u k v k a k q k

k k k e dt k e dt







 

 

 



 



 
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  

   
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        

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

         


        

 

 

  

 

  

 

                         (39) 

When quasi-command tracking augmented LQR method is used to design attitude control laws, 

in addition to design the reduced order observer for the state variable   that cannot be detected, 

the rest of the design process is exactly the same with the above. To this end, there is no longer 

detailed description. Equation (37) is designed according to the reduced order observer in section 

Ⅳ.b, the output error feedback matrix of state observer is  0.3615 0.3714 0eK  . Finally, 

the flying wing UAV flight velocity and pitch angle control laws are designed by the quasi-

command tracking augmented LQR method： 

ˆ

ˆ

t t t t

t t t t

ve t

e e e e

e e e e

ve t

u u u u
v t v a q

u u u u
e t e v e
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e t e v e

u u k v k a k q k

k k k e dt k e dt
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                         (40) 

We will use the two groups of attitude control laws to conduct simulation to the UAV 

longitudinal linear model. In order to simplify the following expressions, set the formula (39) as 

the controller ① and the formula (40) as the controller ②. Now the flying wing UAV linear 

model is selected when the flight status is h=2000m，Ma=0.805. Assume that the initial state of 

the linear model is an equilibrium state. when the simulation time t = 1s, the flight velocity will 

be given a step signal of 50m/s and the pitch angle will be given a step signal of 5°. The 

simulation results are shown in Figure 9 and Figure 10. 
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(a) The flight velocity step response curve       (b) The pitch angle step response curve 

Figure 9.  Simulation results with controller ① 
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(a) The flight velocity step response curve            (b) The pitch angle step response curve 

Figure 10.  Simulation results with controller ② 

 

Figure 9, 10 show that the two controllers are able to make the input signals be tracked without 

steady-state error. Meanwhile, there is high adjusting precision, short transition time and small 

overshoot in the response process. As reduced order observer is introduced in controller②, in 

order to analyze the effect on the command tracking augmented LQR control by the reduced 

order observer, we make the difference between figures 9 and 10, and then obtain system output 

difference curves of the two control methods, which are shown in Figure 11： 
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  (a) The flight velocity difference curve                  (b) The pitch angle difference curve 

Figure 11.  The system outputs difference curve of two control methods 

 

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

40

Time (s)

V
 m

/s
△

 

 
controller①
controller②

        
0 5 10 15 20 25 30 35

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

Time (s)

θ 
de

g
△

 

 

controller①
controller②

 

(a) The flight velocity response curve                  (b) The pitch angle disturbance curve 

Figure 12.  The velocity loop step response curve 
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(a) The pitch angle response curve                 (b) The flight velocity disturbance curve 

Figure 13. The pitch angle loop step response curve 

 

Figure 11 shows that the fluctuating range of the system output difference curves are small in the 

whole response process. So it can be inferred that the introduction of the reduced order observer 
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make little effect on command tracking augmented LQR, and the controller ② almost keep the 

full performance of the controller ①. 

In order to verify the decoupling performance of the two controllers，the same controlled model 

as above will be selected, the flying speed will be given a step signal of 30m / s and the pitch 

angle will be given a step signal of 3°. The simulation results are shown in figure 12 and figure 

13. 

Figure.12 shows that when speed is controlled only, the maximum disturbance of the pitch angle 

is less than 0.7, and the disturbance is 0 after 15s. Figure.13 shows that when pitch angle is 

controlled only, the maximum disturbance of the speed is less than 1.5m/s, the disturbance 

becomes 0 after 15s. Therefore, both controllers have strong decoupling performance.  
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                 (a) The flight velocity response curve                (b) The pitch angle response curve 

Figure 14.  The robustness simulation curve of the two controllers 

 

In order to verify the robustness of the two controllers, we presume that when the UAV is in 

flight with a given speed of 50m/s and a given pitch angle of 5°, it will get a constant value of 

gust disturbance torque of 10N.m at t = 20s. Now use of the linear model mentioned above, the 

response curve obtained is shown in figure 14. The figure 14 shows that the impact of the 

disturbance torques on the flight speed and the pitch angle are little. Therefore, both controllers 

have good disturbance rejection ability and robustness 

 

VI. CONCLUSIONS 
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In this paper, we take high-altitude long-endurance flying wing UAV as a platform. First of all, 

longitudinal mathematical model is established based on its special aerodynamic layout and 

unique control surfaces. Then we combine LQR technology to design the longitudinal stability 

augmentation control law and the attitude control law of the UAV respectively. The stability 

augmentation control is achieved by using output feedback linear quadratic method that not only 

improve the longitudinal static stability and the dynamic characteristics, but also reduce the 

numbers of feedback compared with conventional LQR state regulator. The attitude control law 

of the flying wing UAV uses a special control system augmented method and conventional LQR 

method to obtain a command tracking augmented LQR method. The simulation results show that 

the control law effectively realizes the command tracking of the angle of pitch and the flight 

velocity. Besides, the controller has strong robustness and decoupling performance. It can be seen 

from the time domain performances of the control system that the overshoot, the accommodation 

time and the steady accuracy are very ideal. Finally, when the system state variables can not be 

detected all, we also designed quasi-command tracking augmented LQR control method. It 

retains all the features of command tracking augmented LQR control method and more suitable 

for the application of practice engineering. Above all, the simulation results show that the 

longitudinal control laws of the flying wing UAV based on LQR enable the UAV to achieve 

satisfactory longitudinal flying quality.  
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