PREDISTORTION SYSTEM IMPLEMENTATION BASED ON ANALOG NEURAL NETWORKS FOR LINEARIZING HIGH POWER AMPLIFIERS TRANSFER CHARACTERISTICS

B. Mulliez\(^1\), E. Moutaye\(^2\), H. Tap\(^3\), L. Gatet\(^4\) and F. Gizard\(^5\)

\(^{1,2,4,5}\) CNES, 18, avenue Edouard Belin, F-31401 Toulouse Cedex 9, France

\(^{1,2,3}\) CNRS–LAAS, 2, rue Camichel, F-31071 Toulouse Cedex 7, France

\(^1\) DGA/DS–MRIS, 7, rue des Mathurins, F-92221 Bagneux, France

\(^{1,3}\) Univ. de Toulouse, INP, F-31400 Toulouse, France

Emails: blaise.mulliez@enseeiht.fr, Emmanuel.moutaye@enseeiht.fr, helene.tap@enseeiht.fr, Laurent.gatet@cnes.fr, francis.gizard@cnes.fr


Abstract- In order to correct non-linearities due to High Power Amplifiers (HPA) operating near saturation in telecommunication transceivers, a new adaptive predistortion system based on analog Neural Networks (NNs) was developed. Based on size, consumption and bandwidth considerations, Multi-Layer Perceptron (MLP) type NNs were implemented in a 0.6 μm CMOS ASIC. The NNs parameters are digitally updated with a computer, depending on simulation conditions (temperature drifts, ageing variations). The interface between the analog part and the software updating system is integrated in an analog-digital PCB including a FPGA, 6 analog-to-digital converters and 62 digital-to-analog converters. This paper describes the realization of each part of the breadboard system and presents experimental validation results of the whole predistortion module.

Index terms: High Power Amplifiers, Neural Network Hardware, Predistortion, Spatial Telecommunications