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Abstract- In this paper, we propose a novel posterior belief clustering (PBC) algorithm to solve the 

tradeoff between target tracking performance and sensors energy consumption in wireless sensor 

networks. We model the target tracking under dynamic uncertain environment using partially 

observable Markov decision processes (POMDPs), and transform the optimization of the tradeoff 

between tracking performance and energy consumption into yielding the optimal value function of 

POMDPs. We analyze the error of a class of continuous posterior beliefs by Kullback–Leibler (KL) 

divergence, and cluster these posterior beliefs into one based on the error of KL divergence. So, we 

calculate the posterior reward value only once for each cluster to eliminate repeated computation. The 

numerical results show that the proposed algorithm has its effectiveness in optimizing the tradeoff 

between tracking performance and energy consumption. 

 
Index terms: Partially observable Markov decision processes, wireless sensor networks, target tracking, 

energy consumption, posterior belief, clustering algorithm. 
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I. INTRODUCTION 

 

The rapid deployment, self-organization and fault tolerance characteristics of wireless sensor 

networks (WSNs) make them a very promising sensing technique for military, environmental, 

health, home and commercial applications [1]. However, sensor nodes are usually battery-

powered, all operations of the sensor nodes, including the transceiver operations, should be 

carefully managed to ensure a long operational lifetime [2]. The data processing capabilities and 

communication bandwidth of sensors nodes are both limited. The conflict of communication and 

the loss of transmission data cause WSNs to trap into dynamic uncertain environments. The 

tradeoff between target tracking performance and sensors energy consumption is a challenging 

problem in the dynamic uncertain environment.  

Much effort has been spent in developing efficient power control algorithms to improve system 

performance even with imperfect channel state information [3, 4, 5, 6]. Recently, the type of 

target tracking algorithms based on Markov decision process (MDPs) or partially observable 

Markov decision processes (POMDPs) becomes the focus and hotspot in WSNs [7, 8]. According 

to the characteristics of the uncertain environment around the sensor nodes, we cast the 

scheduling problem of target tracking as the partially observable Markov decision processes 

(POMDPs). Thus target tracking problem of WSNs can be transformed into the optimal policy 

problem of POMDPs. For instance, the Monte Carlo solution method [9] is developed to use a 

combination of particle filtering for belief-state estimation and sampling-based Q-value 

approximation for lookahead. The decision-theoretic approach for dynamic sensor scheduling [10] 

is presented to optimize the problem in terms of maximizing coverage and improving localization 

uncertainty, with a focus on tracking a moving object in a network using only a limited number 

of sensors simultaneously. The smart sleeping policy [11] is proposed to derive a lower bound on 

the optimal energy-tracking tradeoff for discrete state spaces and continuous Gaussian 

observations. POMDPs-based target tracking algorithms provide an elegant solution to the 

optimal tradeoff between tracking performance and energy consumption. However, the existing 

algorithms usually trap into the curse of dimensionality. They only are suitable for the small scale 

WSNs systems. When the number of sensors is large or the states are continuous, the POMDPs 

algorithms could not achieve real-time convergence. 



927 
 

 INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS VOL. 7, NO. 3, SEPTEMBER 2014 

In this paper, we propose a novel posterior belief clustering (PBC) algorithm to solve the tradeoff 

between target tracking performance and sensors energy consumption. The key insight that can 

be drawn is that we calculate the posterior reward value only once for each cluster to eliminate 

repeated computation. Numerical results confirm that PBC can improve the target tracking 

performance and decrease sensors energy consumption simultaneously. 

The rest of this paper is organized as follows. Section II gives the preliminaries of POMDPs. In 

Section III, we model the target tracking under dynamic uncertain environment using POMDPs. 

Section IV proposes a novel posterior belief clustering (PBC) algorithm. Experimental results are 

provided by Section V. Finally, Section VI presents the conclusions of the paper. 

 

II. POMDPs 

 

Formally, the POMDPs model can be presented as a tuple (S, A, Z, T, O, R). S is the set of all the 

environment states. The state is not directly observable in POMDPs, where an agent can only 

compute a belief over the state space S. A is the set of all possible actions. Actions stochastically 

affect the state of the world. Choosing the right action as a function of history is the core problem 

in POMDPs. Z is the set of all possible observations. Observation is usually an incomplete 

projection of the world state, contaminated by sensor noise. T is the state transition probability 

distribution, : ( )T S A S× → ∏ . ( , , ')T s a s  represents the probability of ending in state s' if the 

agent performs action a in state s. O is the observation probability distribution, ( ', , )O s a z  is the 

probability that the agent will perceive observation z upon executing action a in state s'. R is the 

reward function, ( , ) :R s a S A Z× ×  R , is the reward obtained by executing action a in state s. 

The objective of POMDPs is to optimize action selection to collect as much reward as possible 

over time. 

In this paper, unless otherwise specified, superscript represents time (t) and subscript stands for 

the specific variables. Such as, si represents the ith state in the set of S, st

( = )t
iP s s

 represents the state at 

time t,  represents the probability when state is si

's

 at time t. Sometimes, if necessary, the 

current state is denoted s and the next state is denoted . For instance, s represents the current 

state, and 's  represents the next state. 
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The Markov assumption implies that all the historical information (the historical observation set 
1:tz  and the historical action set 0: 1ta − ) needed to monitor or predict by a probability distribution 

over the possible states named a belief state b [12]. At each time point t, the belief state b can be 

calculated as follows: 
0: 1 1:( ) ( | , )t t t tb s P s s a z−= =                                                        (1)  

According to the sequence of action 1ta −  and observation tz , we define the prior belief and the 

posterior belief respectively [12]. The prior belief state of state s at time t, denoted ( ) ( )tb s⋅ , is the 

distribution over the state s at t when action 1ta −  has been occurred but not observation tz . For 

the discrete states, the prior belief can be defined as follows. 
( ) 0: 1 0: 1( ) ( | , )t t t tb s P s a z⋅ − −=                                                        (2)  

For the continuous states, the prior belief can be defined as follows. 
( ) 1 1 ( 1) 1( , , )t t t t t t

s S
b T s a s b ds⋅ − − ⋅ − −

∈
= ∫                                                  (3)  

The posterior belief state of state s at time t is the distribution over the state s at t when both 

action 1ta − and observation tz  have been occurred. For the discrete states, the posterior belief can 

be defined as follows. 
( ) 0: 1 0: 1( ) ( | , , )t t t t tb s P s a z z⋅ − −=                                                    (4)  

Usually, we represent the posterior belief state ( ) ( )tb s⋅  as ( )tb  or 'b . For the continuous state, the 

posterior belief can be defined recursively as follows. 
( ) 1 ( )( ) ( , , ) ( )t t t t t t tb s O s a z b sη − ⋅=                                                   (5)  

According to the above definitions of the prior belief and the posterior belief, the updating 

processes of the belief state b can be described as ( ) ( 1) ( 1 )T Ot t tb b b⋅ ⋅ + + ⋅→ → , where T is the 

state transition function, O is the observation function. Actually, the two computational processes 

can be merged into one computational process. Using Bayes filter update, the belief at time t+1 

represented by 'b can be updated by the belief stat b, action a and observation z at t, defined as 

follows. 

'( ') ( , , ) ( ', , ) ( , , ') ( )
s S

b s b a z O s a z T s a s b s d sτ η
∈

= = ∫                                (6)  

where, ( , , )b a zτ  is the updating function, η  is the normalization factor, 'b  is the posterior belief 

of b, 's  is the state at time t+1. 
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In addition, Bellman shows that the state value function V  is defined as follows.  

1( ) max ( , ) ( | , ) ( )t t
z Za A

V b R b a P z b a V bγ+

∈∈
 = + ∫                                 (7)  

where, ( | , ) ( | , ) ( )
s S

P z b a P z s a b s d s
∈

= ∫ . 

The policy π  of POMDPs is to map belief to action, denoted b aπ ( ) → . The goal of the agent is 

to find the optimal policy π ∗  that maximizes the expected sum of discounted rewards (expected 

return) starting from the initial state. 

*

0
arg max E ( , )t t t

a t
R b aπ γ

∞

=

  =    
∑                                           (8)  

where, γ  is a discount factor. 

 

III. SYSTEM MODEL 

 

In the paper, we cast the target tracking scheduling as POMDPs. Then base station in WSNs can 

be seemed as an agent. The best scheduling policy of target tracking is the optimal policy of 

POMDPs.  

 

a. States and transitions Model 

 

The states set S of WSNs is composed of the states of the moving target G and the states of nodes 

F. For each state s in S, s G F= × , G and F are independent of each other. [ , , , ]T
x yG x y v v= , 

where, x and y denote the position of the moving target in a two-dimensional coordinate system, 

vx and vy

1 2[ , ,..., ]T
NF F F F=

 represent the speed of the moving target in the two-dimensional coordinate system. 

, {0,1}nF ∈  (1 n N≤ ≤ ) denotes the states of nodes in the wake or sleep states 

respectively. The action set A represents all possible scheduling policies chosen by sensor nodes. 

If we select k nodes during the target tracking scheduling, the size of A is | | k
NA C= . The state of 

node at time t+1 is dominated by the scheduling policy ta  at t, the state transition function of 

node is defined as follows. 
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1 0, is not selected by
1 )

1. is selected by  

t
t

n t

n    a
F n N

n  a
+     =      ≤ ≤

   
（                                       (9)  

The state of the moving target at time t+1 is defined as follows. 
1 2

1 2
1

1

1

01 0 0 2
20 1 0 0

00 0 1 0
0 0 0 1 0

t t
s s

t t t
xsst

t t t
x x s y
t t

sy y

x xT T
y y TT

G
v v T

Tv v

β

β

+

+
+

+

+

      
              = = +                 
         

                               (10)  

where, sT  is the length of time slice. t
xβ  and t

yβ  are the noise function directed x-coordinate and 

y-coordinate respectively, and presented by Gaussian distribution 2(0, )xN σ  and 2(0, )yN σ  

respectively. 

The state transition function 1( , , )t t tT s a s +  represents the change of the moving target states and 

the nodes states between two adjacent time slices. Because the moving target states and the 

sensor node states are independent. Thus we can factor the state transition function into two small 

functions. 
1 1 1( , , ) [ ( | , ), ( | )]t t t t t t t t TT s a s P G G P F aβ+ + +=                                     (11)  

where, 1( | , )t t tP G G β+  is the transition function of the moving target, tβ  is noise at t, 
1( | )t tP F a+  is the transition function of sensor node states.  

 

b. Observation model 

 

The observation set Z denotes all possible observation of the base station to the moving target. At 

each time horizon, when the moving target can be detected, the current awake sensor nodes can 

obtain the distance, angle and speed of the moving target. The sensor nodes will send the 

obtained information to the base station. Through information fusion, we can acquire an 

observation z for the moving target. The observation function 1( , , )t t tO s a z+  is used to reflect the 

uncertainty. When the data transmission error is low, the perception information about 

environment is accurate and the noise is small, the probability of observation tz  accorded with 
1ts +  is high, the opposite is low. The observation function upon executing action ta  in state 1ts +  

is defined as follows. 
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1
1 1

1

( , , )( , , ) ( | , )
( , )

t t t
t t t t t t

t t
P s a zO s a z P z s a

P s a

+
+ +

+= =                                       (12)  

 

c. Reward model 

 

The reward function is used to adjust the balance between target tracking performance and 

energy consumption. We should try to not only choose the nodes with low noise and high 

accuracy information, but also avoid the nodes with premature death. The reward function upon 

executing action ta  in state ts  is defined as follows. 

1 1

( , ) ( ( , ) | ( , ) |)
( , )

k N
t t Tar t Sel t t

n n nt
i ni

R s a R g n a R F g n a
d G E

η
= =

= + + −∑ ∑                   (13)  

where, ( , )tg n a  is 1 when the sensor node n is selected by ta , otherwise is 0, ( , )t
id G E  is the 

Euclidean distance between the target position and the selected sensor node iE  by ta , η  is 

reward adjusted factor, Tar
nR  is the reward of the sensor node n which can perceive the moving 

target, and Sel
nR  is the reward that the node n is not chosen repeatedly. 

The purpose of Tar
nR  is to improve the tracking performance. It is associated with the noise and 

sensory information error of sensor nodes. The data of sensor nodes is more accurate, the value of 
Tar
nR  is higher. Sel

nR  is identical for all sensor nodes. If the node is chosen repeatedly, the reward 

Sel
nR  is 0. The objective of Sel

nR  is to reduce the node energy consumption accompanied by 

repeated selection. 

 

IV. POSTERIOR BELIEF CLUSTERING (PBC) ALGORITHM 

 

Section III models the target tracking problem as POMDPs problem. Form Equation (13), we can 

conclude that the optimal tradeoff between tracking performance and energy consumption is the 

optimal value function of POMDPs. The belief states space is the posterior distribution of the 

tracking system states conditioned on the observable history at each time [9]. However, planning 

of POMDPs over the belief states space is the curse of dimensionality which makes it impossible 

to obtain an online solution of target tracking scheduling [13].  
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In order to solve this problem, we present a novel posterior belief clustering (PBC) algorithm. 

The main idea of PBC is as follows. We construct a belief tree rooted by the current belief, and 

calculate its prior belief. Then we use Bayesian filter updating method to calculate the optimal 

posterior belief, and minimize the error between the posterior belief and the clustering point 

according to the KL divergence to obtain the optimal observation. In the range of error, we 

conduct clustering operation. Further, we compute the reward of the clustered posterior belief. 

For the same clustering posterior belief, we calculate the posteriori expected reward just only 

once, and assign the reward to all same clustering posterior belief sensor nodes. At last, PBC 

compares the reward of the clustered posterior belief with the upper and lower bounds of the 

value function, when the result is less than, the branch-and-bound pruning approach is exploited 

to prune the belief sub-trees to reduce the scale of belief states space. When the termination 

condition is satisfied, PBC will get the local optimal policy. 

The Kullback–Leibler ( KL ) Divergence is a non-symmetric measure of the difference between 

two probability distributions [12]. If ϕ  and ψ are the same distributions over the same space Ω, 

then the KL divergence ( relative entropy ) of ϕ  to ψ is defined as follows. 

[ ]( || ) [ln ] [ ]ln
[ ]

i

i
i

i
D Eϕ

ω

ϕ ϕ ωϕ ψ ϕ ω
ψ ψ ω∈Ω

∆ = ∑                                          (14)  

Supposed there are k observations, their optimal posterior belief *( )kb s updated by the Particle 

filters (Particle filters are a sample-based variant of Bayes filters) update is defined as follows. 

* 1 1
0 0 1

1
( ) ( | ) ( | , ) ( )

k
t t t t t t t t

k i i i i i k
i

b s P z s P s s a b s ds ds− −
−

=

∝ ⋅∏∫ ∫                           (15)  

where, 0( )tb s  is the last posterior belief. Let ( )t
i kb s  to be the posterior belief of the ith observation 

in the set of k observations, then ( )t
i kb s  can be calculated by: 

1 1 0 1
1

( ) ( | ) ( | , ) ( )
k

t t t t t t t t t
i k i i j j t o k

j
b s P z s P s s a b s ds ds− − −

=

∝ ⋅∏∫ ∫                           (16)  

Let mix ( | )t
kb s α  to be the weighted sum of ( )t

i kb s , α  is the mixture weight, then the relationship 

between mix ( | )t
kb s α  and ( )t

i kb s  is: 

mix
1

( | ) ( )
k

t t
k i i k

i
b s b sα α

=

∝ ∑                                                         (17)  
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where, 0, 1i ii
α α≥ =∑ . 

The weight iα  is importance for observation t
iz  to the optimal posterior beliefs. The optimal 

observation can be evaluated by minimizing the KL divergence between mixb  and *b . The 

optimal *α  can be calculated as follows. 
* *

mix

mix
mix *

arg min KL( ( | ) || )

( | )arg min ( | ) ln
( )

t
t tk
k kt

k

b b

b sb s ds
b s

α

α

α α

αα

∈Γ

∈Γ

= ⋅

= ⋅∫
                                      (18)  

where, 
1

{ | 1, 0}k
i ii

α α α
=

Γ = = ≥∑ . 

The above description is based on the assumption that b* is as known. In practice, this is not true. 

We can exploit Monte Carlo approach to estimate b* *α [14].  can be optimized by using 

expectation-maximization (EM) or (constrained) gradient descent. In our approach, we perform a 

small number of gradient descent steps to find the mixture weights as [15]. 

From the above computation, we can get a posterior beliefs clustering of k observations. The 

belief can be acquired through accumulating iα :  

( )( ) )
i
b

i m
b i

m C

b C α
∈

= ∑                                                            (19)  

Let bC  is the set of all clustering, 
1

H i
b bi

C C
=

= ∑ , H is the number of clustering. The belief 

rewards before clustering can be calculated as follows. 

1 11
1 1 1 , 2

1
{ },{ } 1 { },{ }{ }

1

( ) ( , ) ( | , ) ( , )

( | , ) ( , )
j i j ii

c c c
a zz

m
D

i a z n a z nz
i

R b R b a P z b a R b a

P z b a R b a

γ

γ −
−

=

= + + +

 
 
 

∫

∏∫



                          (20)  

After clustering, the same clustering have same rewards, the belief rewards after clustering can be 

calculated as follows. 

1
1

2
( ) ( , ) ( ( ))

H
c c i i

b
i

R b R b a R b Cγ −

=

= + ∑                                              (21)  

We propose a novel posterior belief clustering (PBC) algorithm, which is detailed in Algorithm 1, 

to overcome the curse problem of POMDPs. A Particle filters method is exploited to update the 

optimal posterior beliefs, and the K-means approach is used to cluster the posterior beliefs [16]. 
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Table 1: Posterior belief clustering (PBC). 

Algorithm 1. Posterior belief clustering (PBC) 

1: initialization: T denotes the posterior belief tree, d denotes the depth of the tree, D is the 

largest depth of this tree, Rmax(b) denotes the optimal reward, Rc denotes the current reward, 

bc denotes the current belief, k denotes the number of clusters.  

2: construct the posterior tree, the Particle filters method is exploited to update the optimal 

posterior beliefs; 

3: cluster the posterior beliefs, Clustering( )bC T= , for j
bbC C∈ , [1,2, , ]i k∈  , calculate 

( )( ) j
b

j m
m Ci ibb C α∈= ∑  and * ( )

1( ) j
b

j mk
m C i ibb C α∈ == ∑ ∏ ; 

4: perform a small number of gradient descent steps to find the mixture weights: 

1
*

( )1 ( ) ln
( )

j
b

jk
j m m m b

C i b j
i b

b CJ b C
b C
α

α
=∂ ∑= + ∑

∂
; 

5: 
calculate the clustered posterior belief rewards: 1

1
2

( ) ( , ) ( ( ))
Hc c i i

b
i

R b R b a R b Cγ −

=
= + ∑ ; 

6: the branch-and-bound pruning approach is exploited to prune the belief sub-trees; 

7: if max( ) ( ) ( )d D V b R b ε∗= ∪ − < , PBC gets the local optimal policy. 

 

From Algorithm 1, we can know that the size of the belief states space after clustering is 

( ) / DA Z k  . According to the Bellman theorem [17, 18], the same posterior belief has the same 

reward. Therefore, for the same clustering posterior belief, we calculate the posteriori expected 

reward just only once. Our algorithm can avoid repeated computation to improve the real-time 

performance. At last, a branch-and-bound pruning approach is exploited to prune the belief tree 

to avoid unnecessary computation. As discussed above, the time complexity of PBC is 

( ) / DO A Z k  , the space complexity is ( )  DO A Z . 
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V. RESULTS AND DISCUSSION 

 

We evaluate the effectiveness of PBC algorithm from two points of view. The first experiment is 

the comparison of the tracking performance and energy consumption with Q-MDP [11]. The 

second experiment is the comparison of the target tracking accuracy and the lifetime with 

LEACH [19, 20-22]. In this paper, the simulation platform is Matlab R2010a, 32-bit Windows 7, 

Intel (R) Core (TM) : i3 CPU 3.07 GHZ, RAM: 4 GB. 

 

a. Comparison of the tracking performance and energy consumption 

 

In our simulation environment, the target tracking happens in a 100×100 m2 area of the wireless 

sensor network, and the speed of the moving target is 10 m/s. The number of sensor nodes is 100. 

The communication between the sensor nodes and the base station is single-hop. The other 

parameters used in our experiments are as follows: the sampling interval is Ts =1 second; the 

noise is σx = σy

 

 = g ( g is the gravitational acceleration ); the discount factor γ = 0.95 ; the reward 

factor is η = 28, the largest depth of belief tree is D = 6 . The observation noise is Gaussian 

distribution with N(0, 4.25) . We compare our algorithm (PBC) with Q-MDP shown in [11]. 

 
Figure 1.  The comparison of the accumulated errors for PBC and Q-MDP 
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In Figure 1, the tracking accumulated error of PBC is small, which shows that PBC has better 

accuracy. When t = 20, the tracking accumulated error between PBC and Q-MDP is small. But as 

the growth of the time, the error accumulation of Q-MDP algorithm is bigger than that of PBC. 

 

 
Figure 2.  The comparison of the accumulated energy consumption for PBC and Q-MDP 

 

From Figure 2, the energy consumption sum of PBC algorithm is smaller than that of Q-MDP 

algorithm. Because the clustering method is exploited in PBC, the energy consumption should 

not grow rapidly with the time growth. Figure 2 also reflects PBC algorithm has good stability. 

 

 

Figure 3. The tradeoff between tracking performance and energy consumption 
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Figure 3 describes the optimal tradeoff between tracking performance and energy consumption 

compared with PBC and Q-MDP in per unit time. The number of wakeup sensors is more, the 

tracking performance is better and the error is smaller. However, the energy consumption will be 

larger. From Figure 3, we can conclude that our algorithm balances the relationship between the 

tracking performance and the energy consumption better than Q-MDP. PBC is able to realize 

smaller energy consumption to gain better tracking performance. 

 

b. Comparison of the target tracking accuracy and the lifetime 

 

In this section, the simulation environment is a 100×100 m2

 

 area of the wireless sensor network. 

The speed of the moving target is 4 m/s, and the number of sensor nodes is 50. The largest depth 

of belief tree is D = 4. The observation noise is Gaussian distribution with N (0, 1.45). We 

compare our algorithm (PBC) with LEACH shown in [19, 20]. 

 

 
Figure 4.  Comparison of target tracking accuracy 

 

Figure 4 shows the target tracking accuracy between PBC and LEACH. LEACH does not 

consider the target moving factor when forming a cluster, its average accuracy is small, and the 

accuracy is rather changeable. The average accuracy of PBC is higher than LEACH, and the 

changeable range of accuracy is also smaller. The experimental results show that PBC not only 

can get higher accuracy, and better stability. 

0
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The comparison of the lifetime between PBC and LEACH is shown in Figure 5. The number of 

survival nodes changes with runtime (rounds). With the increasing of the death nodes, the death 

speed of nodes is in trend of accelerating. LEACH appears dead node firstly, and all of nodes 

have been dead in about 1200 rounds. PBC begins to appear dead node in about 600 rounds, and 

all of sensor nodes die in about 1800 rounds. Comparison results show that PBC can balance the 

node load and effectively prolong the network lifetime. 
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Figure 5.  Comparison of network lifetime 

 

 

VI. CONCLUSIONS 

 

In this paper, we cast the optimal energy-tracking tradeoff problem in WSNs as the optimal value 

function problem in POMDPs. A novel posterior belief clustering algorithm is proposed to solve 

the tradeoff between target tracking performance and sensors energy consumption in wireless 

sensor networks. Our numerical results illustrate the effectiveness of the approach. 

 

 

 

 



939 
 

 INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS VOL. 7, NO. 3, SEPTEMBER 2014 

ACKNOWLEDGMENTS 

 

This work was supported by the NNSF of China under grant 61074058 and 60874042, and also 

was supported by the Shenzhen Technology Innovation Program of China under grant 

JCYJ20120617134831736. 

 

 

REFERENCES 

 

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam and E. Cayirci, "Wireless sensor networks: a 
survey", Computer networks, vol. 38, No. 4, 2002, pp. 393-422. 
[2] M. Martalo, C. Buratti, G. Ferrari and R. Verdone, "Clustered IEEE 802.15. 4 sensor 

networks with data aggregation: energy consumption and probability of error", IEEE Wireless 

Commutations Letter, vol. 2, No. 1, 2013, pp. 70-73. 

[3] T. Cao, Y. H. Wang, X. M. Xiong and Y. Hao, "Cluster-based Routing Performance 

optimization Constraint of Energy, Delay and Connectivity Metrics in Wireless Sensor network", 

International Journal on Smart Sensing and Intelligent Systems, vol. 6, No. 5, 2013, pp. 2103- 

2118. 

[4] Y. Liu, Y. H. Wang, S. Y. Chen, X. Li and Z. F. Rao, "A Hybrid MAC Mechanism for 

Multiple Load Intelligent Vehicle Transportation Network," International Journal on Smart 

Sensing and Intelligent System, vol. 4, No. 4, 2011, pp. 662-674. 

[5] C. L. Cheng, H. Wu, Z. H. Yu and D. Y. Zhang, "Outlier Detection Based on Similar 

Flocking Model in Wireless Sensor Networks," International Journal on Smart Sensing and 

Intelligent Systems, vol. 6, No. 1, 2013, pp. 19-37. 

[6] H. M. Ammari and S. K. Das, "A Study of k-Coverage and Measures of Connectivity in 3D 

Wireless Sensor Networks," IEEE Transactions on Computers, vol. 59, No. 2, 2010, pp. 243-257. 

[7] J. Kim, X. Lin, B. N. Shroff and P. Sinha, "Minimizing Delay and Maximizing Lifetime for 

Wireless Sensor Networks With Anycast," IEEE/ACM Transactions on Networking, vol. 18, No. 

2, 2010, pp. 515-528. 



Bo Wu, Yanpeng Feng, Hongyan Zheng, POSTERIOR BELIEF CLUSTERING ALGORITHM  
FOR ENERGY-EFFICIENT TRACKING IN WIRELESS SENSOR NETWORKS 

940 
 

[8] T. Nanayakkara, M. N. Halgamuge, P. Sridhar and A. M. Madni, "Intelligent sensing in 

dynamic environments using Markov decision process", Sensors, vol. 11, No. 1, 2011, pp. 1229-

1242. 

[9] Y. He, and K. Chong, "Sensor scheduling for target tracking in sensor networks", Proc. CDC 

2004, pp. 743-748, Nassau, Bahamas, Dec. 17-17, 2004. 

[10] X. Fei, A. Boukerche and R. Yu, "A POMDP based K-coverage dynamic scheduling 

protocol for wireless sensor networks", Proc. GLOBECOM 2010, pp. 1-5, Miami, FL, UAS, Dec. 

6-10, 2010. 

[11] J. A. Fuemmeler, G. K. Atia and V. V. Veeravalli, "Sleep control for tracking in sensor 

networks", IEEE Transactions on Signal Processing, vol. 59, No. 9, 2011, pp. 4354-4366.  

[12] X. Boyen and D. Koller, "Tractable inference for complex stochastic processes", Proc. UAI 

1998, pp. 33-42, Madison, Wisconsin, UAS, July 24-26, 1998. 

[13] B. Wu, H. Y. Zheng and Y. P. Feng, "Point-based online value iteration algorithm in large 

POMDP", Applied Intelligence, vol. 40, No. 3, 2014, pp. 546-555. 

[14] X. Wang, J. J. Ma, S. Wang and D. W. Bi, "Cluster-based dynamic energy management for 

collaborative target tracking in wireless sensor networks". Sensors, vol. 7, No. 7, 2007, pp. 1193-

1215. 

[15] C. Kwok, D. Fox and M. Meila, "Real-time particle filters", Proceedings of the IEEE, vol. 

92, 2004, pp. 469-484. 

[16] R. Cohn, E. Durfee and S. Singh, "Planning Delayed-Response Queries and Transient 

Policies under Reward Uncertainty", Proc. MSDM 2012, pp. 17-23, Holetown, Barbados, April 

14-18, 2012. 

[17] S. Ross, J. Pineau, S. Paquet and B. Chaib-draa, “Online planning algorithms for POMDPs,” 

Journal of Artificial Intelligence Research, vol. 32, No.1, 2008, pp. 663-704. 

[18] J. Pineau, G. Gordon and S. Thrun, “Anytime point-based approximations for large 

POMDPs,” Journal of Artificial Intelligence Research, vol. 27, No. 1, 2006, pp. 335-380. 

[19] W. R. Heinzelman, A. Chandrakasan and H. Balakrishnan, “Energy-Efficient 

Communication Protocol for Wireless Microsensor Networks,” Proc. HICSS 2000, pp. 3005-

3014, USA, Jan. 4-7, 2000.  

[20] G. R. Mendez and S .C. Mukhopadhyay, “A Wi-Fi Based Smart Wireless Sensor Network 

for an Agricultural Environment”, Smart Sensors, Measurement and Instrumentation, Vol. 3, 



941 
 

 INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS VOL. 7, NO. 3, SEPTEMBER 2014 

Wireless Sensor Networks and Ecological Monitoring, ISBN 978-3-642-36364-1, Springer-

Verlag, by S. C. Mukhopadhyay, and J. A. Jiang, 2013, pp. 247-268. 

[21] X. N. Fan and Y. L. Song, “Improvement on LEACH Protocol of Wireless Sensor 

Network,” Proc. SENSORCOMM 2007, pp. 260-264, Valencia, Spain, Oct. 14-20, 2007. 

[22] N.K. Suryadevara, S.C. Mukhopadhyay, R. Wang, R.K. Rayudu, Forecasting the behavior of 

an elderly using wireless sensors data in a smart home, Engineering Applications of Artificial 

Intelligence, Volume 26, Issue 10, November 2013, Pages 2641-2652, ISSN 0952-1976, 

http://dx.doi.org/10.1016/j.engappai.2013.08.004. 

 

http://dx.doi.org/10.1016/j.engappai.2013.08.004�

