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Abstract- A nonlinear couple modeling of magnetostrictive cantilever is built by combining Gibb’s free 

energy formulation with the Euler-Bernoulli beam theory. The Gibb’s free energy corresponding to 

different orientations in 3D space can be expressed in terms of their direction cosines, the stress at a 

given point can be described by classical theory. The magnetomechanical bending experimental setup is 

designed. The results demonstrated magnetostrictive sensing can be performed in bending even when 

both tensile and compressive stresses are developed; meanwhile the sensing is primarily due to the 

dominating effect of compression over tension. 

 

Index terms: Magnetostrictive, beam, nonlinear couple, sensor performance 
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I. INTRODUCTION 

Smart materials can transduce one form of energy to another, and the energy transduction is 

manifested as a change in shape and physical properties of the materials when they are exposed 

to an external energy field which produces a change in their atomic arrangement. Such changes 

are used in actuator and sensor applications. They show the different effects related to energy 

transduction between electrical, magnetic, mechanical andthermal fields. The more widely smart 

materials such as piezoelectric, magnetostrictive and shape memory alloy (SMA) are used. These 

materials are grouped together due to certain common physical and functional characteristics 

shared by them, Piezoelectric materials offer several advantages such as large blocked stress (~50 

MPa) and free strain ( 1000~ ), fast response as they are activated by electric field (voltage) 

with an operational bandwidth of upto 20 MHz and low impedance at high frequencies.but 

require very high electric field (voltage) and are brittle and extremely sensitive to temperature 

which restricts them from being used in harsh environments. Due to the absence of a spontaneous 

polarization, electrostrictives can be used as a sensor only. 

Piezoelectric materials are used in a variety of actuator and sensor applications [1, 2, 3]. They are 

widely used in several transducers like accelerometers, load cells and pressure sensors. 

Engineered piezoelectric transducers such as RAINBOW and THUNDER are used in valves, 

linear motors, configurable mirrors and synthetic jet actuators. Other aerospace applications 

include active control of twist and flap in rotor blades and development of configurable airfoils. 

Piezoelectric stacks are also used in ultrasonic motors, sonars and for nano-positioning in AFM 

and STM stages. In the presence of a bias electric field, SMA [2, 4, 5] such as Nitinol (Ni55Ti45) 

exists in a low temperature martensite phase and a high temperature austenite phase which can be 

reversibly obtained by cycling temperature. But they are brittle and their bandwidth is limited by 

eddy current formation. 

Magnetostrictive materials such as Terfenol-D show high strain and blocked stress [6, 7]. In 

general, all magnetostrictives show fast response as magnetic field can be controlled by changing 

current which can be changed as fast as electric field. Unlike piezoelectric, these materials can be 

used under static and low frequency conditions with very low impedance but they offer high 

impedance at high frequencies (kHz range) due to the inductive nature of the materials. One of 
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the reasons for the promise of these materials in a host of applications is the development of a 

new class of structural magnetostrictive materials, iron–gallium alloys (Galfenol). 

Galfenol exhibits moderate magnetostriction (~350 ppm) under very low magnetic fields 

~100Oe, have very low hysteresis, and demonstrate high tensile strength (~500 MPa) and limited 

variation in magnetomechanical properties for temperatures between −20
◦
C and 80

◦
C. These 

materials are, in general, machinable, ductile and can be welded. Thus, they can be easily 

threaded, attached to existing structures and used as load bearing members. They have a high 

Curie temperature (675
 ◦

C) and are corrosion resistant. The raw materials used to produce 

Galfenol are relatively inexpensive. All these factors demonstrate that Fe-Ga alloys have great 

promise as an engineering material for actuation and sensing applications [8, 9, 10]. 

Yoo designed a tuning fork-based gyro sensor which uses mm-size Galfenol patches as actuator 

and sensor material in bending. Downey showed that mm-scale Galfenol rods can be used as a 

sensor in bending and the results of this work was used to conceptualize a nanowire-based 

broadband acoustic sensor. Further work in this area led to the mechanical characterization of 

Galfenol nanowires which showed that although their Young’s modulus is similar to that of bulk 

material, they possess almost three times the tensile strength. Datta and Flatau showed that 

Galfenol could be adhered to a structural material and used as strain sensor in bending. Hale and 

Flatau and Parsons demonstrated the application of Galfenol in tactile sensing and torque sensing 

respectively. Ghodsi developed a positioning actuator for cryogenic environment. Ueno et al. 

developed linear actuator, wobblers and vibrator [11, 12, 13]. 

Such applications motivate the development of a modeling framework and performance analysis 

for active structures. Structural modeling of extensional magnetostrictive transducers has 

successfully been performed, while performance analysis of Magnetostrictive cantilever has been 

a challenge. 

Various non-linear models have also been developed to account for the magnetomechanical 

response of ferromagnetic materials over different operating conditions. Higher order series 

expansion of the free energy yielded the Landau model. Bergqvist and Engdahl combined the 

effects due to stress and magnetic field into an equivalent field term and incorporated this in the 

Preisach operator to model the effect of stress on magnetization [14]. A stress-induced field term 

was introduced into the Langevin term by Jiles to model the effect of stress on magnetization vs. 

field curves as well as the effect of magnetic field on magnetization vs. stress curves. Ghosh and 
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Gopalakrishnan used a neural network technique to non-linearize the coupled constitutive 

equations and successfully predicted both the actuation and sensing characteristics of 

magnetostrictive materials. These models were limited to one-dimensional analysis and did not 

account for magnetocrystalline anisotropy which is required to capture the directional preference 

of magnetization orientation based on the crystal symmetry of different materials. 

Armstrong [15] extended the Stoner-Wohlfarth model to cubic anisotropy and was able to come 

up with a three-dimensional model for magnetostrictive actuation. This approach was adapted to 

model both the actuator and predict the sensor responses of single crystal and polycrystalline 

Galfenol subjected to collinear stress and magnetic fields. An extension to this approach was 

developed to add stress-annealing effect by incorporating a uniaxial anisotropy. These models 

included Zeeman, stress-induced anisotropy and magnetocrystalline anisotropy energy but 

excluded the exchange energy because it is non-zero only within the domain wall and hence 

forms a small fraction of the total energy of a bulk sample. Moreover, the preclusion of the 

magnetostatic energy incapacitates the ability of these models to account for demagnetization 

effects. 

Smith developed a homogenized energy model which included magnetostatic, stress-induced 

anisotropy, magnetocrystalline anisotropy and exchange energy terms [16, 17, 18, 19]. The 

exchange interaction was phenomenologically incorporated using Boltzmann statistics which 

ironically considers only noninteracting particles. Moreover the use of Boltzmann statistics is 

only applicable to a large number of particles and may not be a valid assumption near saturation 

when the material is almost in a single domain state. Using Armstrong’s energy formulation and 

Smith’s framework of homogenized energy model, Dapino developed a magnetomechanical 

model which takes into account six possible directions of magnetization orientation instead of 

two directions in Smith’s work [20]. These approaches introduce dynamic effects into the 

constitutive model using thermal relaxation techniques and are particularly useful for obtaining 

closed minor loops when operating an actuator or sensor with DC bias magnetic field and stress 

respectively. 

This article investigates the performance analysis of Galfenol-driven cantilever beam considering 

the effect of the magnetic induction and stress. In order to motivate a modeling technique in the 

frame, a magnetostrictive cantilever beam model is established, constitutive relations that 

describe the material behavior are based on energy minimization techniques. The saturation 
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magnetization (Ms), the magnetostrictive constant ( 100 ) and the 4th and 6th order anisotropy 

constants ( 1K and 2K respectively) are used to calculate the Zeeman, stress-induced anisotropy 

and magnetocrystalline anisotropy energies per unit volume. The Euler-Bernoulli assumption of 

the classical beam theory is adopted to solve stress of the magnetostrictive cantilever beam. 

Experiments and simulations are conducted to study performance of the cantilever. 

 

II. MODELING OF CONSTITUTIVE BEHAVIOR 

Constitutive relations that describe the material behavior are usually based on energy 

minimization techniques. The first part of such a technique involves the formulation of an energy 

functional which includes or precludes certain terms based on assumptions appropriate for the 

purpose of the model. The second part involves the use of mathematical techniques to extract the 

information about a required physical response of the material under the influence of force fields 

that perturb the energy. 

The simplest model for magnetoelastic material is the coupled linear constitutive equations. 

Considering both strain and magnetic induction in the material as functions of stress and 

magnetic field, a first order truncated Taylor series expansion about a given operating point 

 00 ,H  can be written as Equations (1) and (2). Note that stress and magnetic field are assumed 

to be independent inputs to the material. 

dH
H

dd
HH 0000 ,, 



















   （1） 

dH
H

B
d

B
dB

HH 0000 ,, 


 









    （2） 

The total workdone ( dW ) on a unit volume of ferromagnetic material by a stress and magnetic 

field due to infinitesimal change in strain and magnetic induction can be expressed by Equation 

(3). Note that dW is not an exact differential. 

HdBddW         （3） 

For a reversible process, the change in internal energy (dU) can be expressed using Equation (4) 

which can be obtained by substituting Equation (3) in the 1st Law of Thermodynamics. Here S 

and T denote entropy and temperature respectively. 
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TdSHdBddU      （4） 

The Gibb’s free energy of the system is given by Equation (5)              

TSHBUG     （5） 

The change in Gibb’s free energy in an isothermal reversible process can be expressed by 

Equation (6). 

TdSHdBBdHdddUdG    （6） 

Combining Equations (4) and (6), the change in Gibb’s free energy can be written as shown in 

Equation (7). 

BdHddG       （7） 

Equation (7) can be used to interpret the differential quantities in Equations (1) and (2) as 

follows. The mechanical compliance of the material in a process where the magnetic field (H0) is 

maintained constant while the stress is quasistatically perturbed about a given stress 0 is 

expressed by Equation (8). 

00
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,

,

2

2

,
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



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

  （8） 

Similarly, magnetic permeability of the material in a process where the stress 0  is maintained 

constant while the magnetic field is quasi-statically perturbed about a given field (H0) is 

expressed by Equation (9). 
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,
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

   (9) 

The strain coefficient ( Hd   ) and stress sensitivity (  Bd * ) which couple the effects 

of magnetic field and mechanical stress are expressed by Equations (10) and (11) respectively 

and are identical to each other as evident from their relation to the 2nd derivative of the Gibb’s 

free energy. 
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 （10） 
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   (11) 

The saturation magnetization (Ms), the magnetostrictive constant ( 100 ) and the 4th and 6th order 

anisotropy constants ( 1K and 2K respectively) is used to calculate the Zeeman, stress-induced 

anisotropy and magnetocrystalline anisotropy energies per unit volume due to a stress ( ) and a 

magnetic field (H) applied along the [100] direction as shown in Equations (12), (13) and (14) 

respectively. 

10  HME sH 
          （12） 

2

1100
2

3
 E

          （13） 

   2

3
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2

2

12

2

1

2

3
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3

2

2

2

2

2

11  KKEan 
              （14） 

The free energy ( TOTE ) of the system corresponding to different orientations in 3D space can be 

expressed in terms of their direction cosines (
321 ,,  ) as shown in Equation (15). 

  anHTOT EEEE  ,
   （15） 

In order to develop an expression for the bulk magnetization and magnetostriction, it is necessary 

to understand the following probabilistic approach. Let us assume that a bulk magnetic material 

is composed of a number of noninteracting magnetization units. The fraction of these units at a 

state  ji, , which is defined by the orientation  ji  ,  of these units, may be denoted by ijp . 

From the physics of ferromagnetism, a larger number of magnetic moments would align along a 

direction of lower energy. Since ijp is proportional to the number of magnetic moments and 

inversely proportional to  jiTOTE  , , a probability density function given by Equation (16) can 

be used to express ijp  as a function of  jiTOTE  , . The choice of an exponential distribution in 

Equation (16) is made to avoid a singularity at TOTE =0. 

 
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Here mN  is a normalizing factor which can be calculated from Equation (17) from the definition 

of a probability density function and   is an empirical scaling factor. It is assumed that the 

energy is distributed in a sphere of unit radius. 

 
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0 0

sinexp
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m

     (17) 

Let us assume  ,Q is a distributed physical quantity. The expected value Q can be obtained 

from Equation (18). 
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In order to calculate the magnetization along [100], we substitute  ,Q with   )( 1100 sMM  in 

Equation (18) and convert the definite integrals to finite summations which give us Equation 

(19). An optimum value of 05   is used for all cases to get converged solutions in 

reasonable computation time. 
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The magnetic induction is calculated using Equation (20). 

 HMB  0        (20) 

The same hypothesis can be extended to calculate the magnetostriction along [100] using 

Equation (21). 
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The total strain can be described by Equation (22) where ES is the purely mechanical Young’s 

modulus of the material and is also known as the modulus at magnetic saturation. This is the 

modulus measured when all the magnetic moments are oriented either parallel or anti-parallel. 




 
sE           (22) 

 

 

 

 

III. CLASSICAL BEAM THEORY 

Structural members subjected to transverse loads and operating in flexural mode are known as 

beams. The Euler-Bernoulli assumptions of the classical beam theory are as follows: 

1. The cross-section of the beam has a longitudinal plane of symmetry known as the neutral 

plane. 

2. The resultant of the transversely applied loads lies in the longitudinal plane of symmetry. 

3. Plane sections originally perpendicular to the longitudinal axis of the beam remain plane and 

perpendicular to the longitudinal axis after bending. 

4. In the deformed beam, the planes of cross-sections have a common intersection, that is, any 

line originally parallel to the longitudinal axis of the beam becomes an arc of a circle described 

by the radius of curvature. 

These assumptions are applicable to a beam whose length is 8-10 times more than both its width 

and its thickness. 

 

Figure 1. An Euler-Bernoulli beam in a Cartesian coordinate system 

 

Let us assume a beam with length (L) along the x-direction and thickness (t) along the z-direction 

as shown in Figure 1, is subjected to a bending force. If the transverse displacement (w) along the 

z-direction after the bending deformation is much smaller than the beam thickness, then the axial 

displacement (u) along the xdirection can be expressed using Equation (23). 
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dx

dw
zu 

          （23） 

The axial strain ( x ) can be expressed using Equation (24) 

2

2

dx

wd
z

dx

du
x 

        (24) 

Using Equation (24) along with the constitutive equation ( xx E  ) for elastic material (where 

E is the Young’s modulus of the beam material), a moment balance about the y-axis would yield 

Equation (25) which describes the relationship between bending moment (M), stress and beam 

dimensions. 

I

M
zx 

         (25) 

In Equation (35), I is the 2nd moment of area which can be calculated from Equation (26) for a 

beam with a uniform rectangular cross-section as shown in Figure 1. 
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    (26) 

The question posed at the end of the previous section motivates the study of the distribution of 

stress and magnetic induction along the thickness of a magnetostrictive beam which is fixed at x 

= 0 and free at x = L. A beam with these boundary conditions is also known as a cantilevered 

beam. Cantilevered beams are often used for bending characterization. 

The stress at a given point in a cantilevered beam subjected to a transverse tip loading (F) can be 

described using Equation (27) which can be obtained by substituting  xLFM  in Equation 

(25). 
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IV. EXPERIMENT RESULT AND DISCUSSION 

The magnetomechanical bending experimental setup was designed. The test setup consists of 

magnetic and mechanical components. The magnetic components were designed to apply 

different DC bias magnetic fields along the length of the Galfenol beam.  
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Figure 2 shows the free-body diagram of the Galfenol beam specimen placed between the top and 

bottom fixtures. The four silicon carbide rods form line contacts with the beam which can be 

described by four points. The two upper rods which are separated by a distance (2a) apply equal 

loads of magnitude (P/2). The two lower rods which are separated by a distance (4a) provide 

equal reaction forces of magnitude (-P/2). 

 

 

 

 

 

 

 

 

 

Figure 2. Free body diagram of the cantilevered beam 

 

 

Figure 3.   Stress distribution in a beam subjected to four-point bending 

 

Figure 3 shows the stress distribution in a beam of length mm25 and crosssection mmmm 22   

subjected to four-point bending. A force (P) of N20  was used for simulation. a region of 
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constant stress can be seen in Figure 2 for 7.03.0  Lx . A value of mmx 5.20   and 

mma 5 were used in the simulation to be consistent with the actual design. 

 

Figure 4.   The experimental set-up 

Figure 4 shows the assembled test setup，the mechanical fixture was mounted on a hydraulic 

MTS810 universal testing machine. A silicon carbide ball that was used to transfer load from the 

MTS machine to the mechanical fixture provided a point contact in order to ensure that only axial 

force is exerted on the Galfenol beam. The electromagnet was clamped on two sides and placed 

in the same horizontal plane as the sample so as to apply magnetic field along the length of the 

sample. The DC bias magnetic field was applied by passing a constant current through the 

solenoid. The load was quasi-statically cycled once from 0 to 50 N at a ramp rate of 2.5 mm/min. 

At the end of the load cycle, the constant current in the solenoid was switched off. Before each 

test, the sample was demagnetized over 167 cycles using a 1 Hz sinusoidal field which underwent 

a 10 % geometric decay every 1.5 cycles from initial amplitude of 15 kA/m. The procedure 

repeated for applied magnetic fields of 0, 1.35 ± 0.1, 1.99 ± 0.5, 2.71 ± 0.5, 7.52 ± 5 and 11.01 ± 

0.5 kA/m which were obtained by passing currents of 0, 0.05, 0.15, 0.25, 1 and 1.75 ampere 

through the solenoid. 

Note that these applied magnetic fields were measured in air by placing a hand-held gaussmeter 

in between the pole pieces of the electromagnet for different constant current in the solenoid. In 

this experiment, the bias magnetic field in the sample could not be maintained during the loading 

cycle using the feedback controller because of the lack of closed magnetic circuit. Moreover, the 

stress distribution in the Galfenol beam creates a spatial distribution of the magnetic field in the 

beam unlike in the Galfenol rod, where a uniform stress-state in the entire rod ensured a uniform 

change in reluctance and magnetic field in the Galfenol sample. 
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A pick-up coil with 100 turns wrapped around the sample and connected to an integrating 

fluxmeter measured the thickness-averaged magnetic induction along the beam span between the 

load applicators. 

 

Figure 5. Thickness-averaged magnetic induction as a function of Mxt 

 

Figure 5 shows the thickness-averaged magnetic induction measured by the pick-up coil placed 

in the mid-section of the beam in between the load application points. The maximum induction 

that could be observed in the Galfenol sample was limited to ~0.5T because of the following 

reason. An applied magnetic field of 7.52kA/m was sufficient to saturate the electromagnet steel 

core and hence any additional current through the solenoid did not significantly increase the flux 

through the electromagnet. Although the electromagnet was useful for concentrating the magnetic 

flux into the Galfenol sample, the lack of a perfectly closed magnetic circuit caused significant 

flux leakage and could generate a magnetic induction of only 0.5T in the Galfenol sample while 

the electromagnet core got saturated. 

At a given non-zero magnetic bias field (H), Galfenol is expected to show an increase in B under 

tension and a decrease in B under compression. If the effect of tension and compression due to 

bending on B were equal then B should remain constant at all xtM . Such behavior is observed at 

zero and low H (upto 2.71kA/m). At higher H (7.52 and 11.01kA/m), the magnetic moments are 

mostly aligned in the direction of H and hence a tensile stress collinear to H does not contribute 

to any change in B and the magnetic response is dominated by compressive stress. This is evident 

from the decrease in B. If xtM  is increased to a critical value, the magnetic moments in the 
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compressive region of the sample are all aligned perpendicular to H. Beyond this xtM , no stress 

induced change in magnetic moment orientation takes place thereby leading to a steady value of 

B. 

The thickness-averaged B can be deduced using the principle of superposition.The net B 

measured by the pick-up coil can be assumed to be the average of the B below the neutral axis of 

the Galfenol beam which is in tension and the B above the neutral axis of the beam which is in 

compression. The B below and above the neutral axis will be proportional to the volume fraction 

of magnetic moments and their orientation in these regions respectively. This information can be 

qualitatively deduced from the energy maps shown in Figures 5 

 

(a) In a demagnetized and un-stressed sample 

 

(b) After applying a high bias magnetic field 
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(c) In the region above neutral axis after bending 

 

(d) In the region below neutral axis after bending. 

Figure 6. Total energy distribution in the azimuthal plane 

 

Figure 6(a) shows the four equal energy minima in Galfenol in the absence of stress and magnetic 

field owing to its cubic magnetocrystalline anisotropy. Figure 6(b) shows that when a large bias 

magnetic field is applied along 00 , most of the magnetic moments which were earlier oriented 

along 00 180,90  and 0270 rotate towards 
00 .When the Galfenol sample undergoes bending in 

presence of the large bias field, the parts of it which are in compression and tension have the 

energy distribution as shown in Figure 6(c) and Figure 6(d) respectively. The compressive stress 

rotates some of the magnetic moments lying above the neutral axis of the beam from 00  toward 

090  and 0270 . The tensile stress can rotate the magnetic moments lying below the neutral axis of 

the beam to either 00  or 0180 . Since most of the magnetic moments are already oriented along 
00  

under the influence of a large bias field, the tensile stress has no effect. As a result, the effect of 
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compressive stress in the upper half of the beam dominates over the effect of tensile stress in the 

beam’s lower half, and a net change in thickness-averaged B is observed before and after bending 

in the presence of a large bias magnetic field. 

 

VI. CONCLUSIONS 

This article investigates the performance analysis of Galfenol-driven cantilever beam. A 

magnetostrictive cantilever beam model is established; constitutive relations that describe the 

material behavior based on energy minimization techniques. The Euler-Bernoulli assumptions of 

the Classical Beam Theory are used to solve stress of the magnetostrictive beam. Experiments 

and simulations are conducted to study performance of the cantilever; the sensing is primarily 

due to the dominating effect of compression over tension. 
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