
INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS VOL. 7, NO. 4, DECEMBER 2014 

1830 
 

 
 

CENTRALIZED DISCRETE STATE SPACE MODEL 

PREDICTIVE CONTROL AND DECENTRALIZED PI-D 

CONTROLLER OF AN AEROTHERMIC PROCESS 

 

M. Ramzi1 and H. Youlal2 

1LASTIMI, École Supérieure de Technologie de salé, 
Université Mohamed V de Rabat, Maroc, 

2UFR Automatique et Technologies de l’Information, 
Faculté des Sciences de Rabat, 

Avenue Ibn Batouta, B.P. 1014, Rabat, Maroc, 

musramzi@yahoo.fr 

 

 

  Submitted: Sep. 15, 2014             Accepted: Nov. 3, 2014       Published: Dec. 1, 2014

  

 

Abstract- The aerothermic process is a pilot scale heating and ventilation system equipped with a 

heater grid and a centrifugal blower. The interaction between its main variables is considered as 

challenging for mono-variable controllers. A change in the ventilator speed affects the temperature 

behavior which represents a factor that must be managed for energy saving and the human welfare. 

This paper presents an experimental comparison between a Centralized Discrete State Space Model 

Predictive Control (CDSSMPC) and a Decentralized PI-D (DPI-D) controller. These both 

techniques are designed by using respectively the Laguerres functions and the static decoupler 

approach. To demonstrate the effectiveness of the two methods, an implementation on an 

aerothermic process is performed. This pilot scale is fully connected through the Humusoft MF624 

data acquisition system for real time control. The results show satisfactory performance in closed-

loop of the DPI-D controller compared to the CDSSMPC and the conventional PID ones. 

 
Index terms: Centralized discrete state space model predictive control, Laguerre functions, Static 

decoupler, Decentralized PI-D controller, Multivariable systems, Aerothermic process. 
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I. INTRODUCTION 

 

The heating and ventilation play an important role in human thermal comfort especially for 

the people, which perform their activities within the building offices. It is also the case in 

many industrial sectors including chemical, mineral, drying and distillation processes, as well 

as pharmaceutical and agro alimentary production units where the temperature is a critical 

parameter. Thus, an important factor is to look for a tradeoff between the energy conservation 

and the person's welfare in order to maintain the healthy and safe working environment to the 

conditioned space. Although the temperature control is no more a challenging control problem 

in most of these applications. Nevertheless, some practical issues in many temperature control 

applications stimulate new developments and further investigations [1-14]. 

For education and searching purposes, many types of aerothermic processes are available. 

They highlight most heating and ventilation problems, and they are widely referenced in the 

process control literature. Different prototypes of these processes have been used to check 

new control strategies and many results were reported in the single variable control cases [1-

2,8,11,14].   

The aerothermic processes are generally subject to significant interactions between its main 

variables. However, they were not explicitly considered in most reported control. Worth to 

mention herein that the basic factory control system delivered with most of aerothermic 

processes is restricted to the classical analog PID controller without taking into account of 

interactions between its main parameters [15].  

In this paper, the Decentralized PI-D controller (DPI-D) [1] is considered and compared to 

both a Centralized Discrete State Space Model Predictive Control (CDSSMPC) [4] and a 

conventional PID controller to ensure the desired level of temperature and air flow of the 

aerothermic process. To fulfil the requirement for integral action in the CDSSMPC controller, 

it is embedded with integrators to achieve this objective and ensure outputs steady-state error 

free [16]. The implementation of the discrete state space predictive control in real time is 

based on the result of the cost function minimization and only the first input of the optimal 

command sequence is used each time a new state is updated. In the synthesis of the 

CDSSMPC and the DPI-D controllers, a multivariable model is identified using a numeric 

direct continuous-time identification approach [1-2,17-20]. 

The paper is organised as follows. Section II introduces the description of the aerothermic 

process and underlines the interaction between the main process variables. Section III 

discusses the multivariable direct continuous-time identification of the aerothermic process, 



INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS VOL. 7, NO. 4, DECEMBER 2014 

1832 
 

which is represents the first step in the design of both the DPI-D and the CDSSMPC 

controllers. Section IV introduces the CDSSMPC algorithm where integral actions and set-

point tracking are naturally embedded in the algorithm. In this section, we recall the main 

steps in the development of quadratic programming which implement the CDSSMPC and the 

Laguerre functions. Also, this section describes the proposed DPI-D controller based on the 

static decoupler [1]. Its parameters are calculated by using the IMC tuning rules. Section V 

reports the experimental control results of the aerothermic process operation. Robustness of 

the DPI-D controller compared to the CDSSMPC ones is also discussed and a final 

conclusion is given. 

 

II. AEROTHERMIC PROCESS DESCRIPTION 

 

The considered pilot scale aerothermic process [1-3,15], is shown as a schematic diagram in 

figure 1 and depicted in a three dimensional view in figure 2. It has the basic characteristics of 

a large process, with a tube through which atmospheric air is drawn by a centrifugal blower, 

and is heated as it passes over a heater grid before being released into the atmosphere. 

 

 
Figure 1. Schematic illustration of aerothermic process 

 



M. Ramzi and H. Youlal, CENTRALIZED DISCRETE STATE SPACE MODEL PREDICTIVE CONTROL AND 
DECENTRALIZED PI-D CONTROLLER OF AN AEROTHERMIC PROCESS 
 

1833 
 

 
Figure 2.  Three-dimensional view of aerothermic process and analog PID 

 

The temperature control is achieved by varying the electrical power supplied to the heater 

grid. There is an energized electric resistance inside the tube, and due to the Joule effect, heat 

is released by the resistance and transmitted, by convection, to the circulating air, resulting in 

heated air [13]. The air flow is adjusted by varying the speed of the ventilator.  

This process can be characterized as a non-linear system. The physical principle which 

governs the behaviour of the aerothermic process is the balance of heat energy. Hence, when 

the air temperature and the air flow inside the process are assumed to be uniform, a linear 

system model can be obtained. This kind of aerothermic process is being used by many 

researchers to check their new control strategies [1-4,6,14]. 

As shown in the schematic of the aerothermic process, the system inputs, (u1, u2), are 

respectively the power electronic circuit feeding the heating resistance and the ventilator 

speed. The outputs, (y1, y2), are respectively the temperature and the air flow. The input-

output signals are expressed by a voltage, between 0 and 10 V, issued from the transducers 

and conditioning electronics.  

To examine the possibility of interaction between the temperature and air flow, two 

experiments were carried out. In each case, the two process inputs were held constant and 

allowed to settle. If one of them undergoes a step change, the behaviour of the other output 

will be observed to see if this change had any effect on it. Figure 3 shows the results from 

both experiments. 
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Figure 3.  Interactions between the main variables of the aerothermic process 

 

In the first half plot of this figure, the electric voltage supplied to the heater grid is held 

constant (at 4V) and the ventilator speed undergoes a step change from 30% to 70% of its full 

range. The air temperature varied considerably from 4V (45°C) to 2V (35°C). The second half 

plot shows the results when the ventilator speed is held constant and the electric voltage of the 

heater grid undergoes a step change, from 40% to 80% of full range. As can be seen, the air 

temperature is varied accordingly but the air flow is remained unaffected. 

These results show that the air temperature behaviour depends also of the operating conditions 

of the air flow. Hence, the change in air temperature behaviour is provided by two effects: a 

direct effect, by the heater grid and indirect effect via the ventilator speed. Our main aim is 

then to eliminate the indirect effect. 

The main objectives to applying the Centralized DSSMPC and the Decentralized P-ID 

controller are to searching for desired levels of the temperature and the air flow by reducing 

completely or partially the interactions effect.  

 

III. MATHEMATICAL MODELS 

 

The system identification is an experimental approach to determine the transfer function or 

equivalent mathematical description for the dynamic of an industrial process component by 

using a suitable input signal. This approach represents the first step in the design of a most 

controller.  
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In order to generate estimation and validation data for system identification, an experiment is 

performed. Data set used for the parameter identification step is build up with Pseudo 

Random Binary Sequence (PRBS) signals which are applied simultaneously to the two 

manipulated variables of aerothermic process. This data set and their correspondent outputs 

are displayed in figure 4. The sampling interval is Ts=1 second. The signals collected, via the 

Humusoft MF624 data acquisition module, are yield in the interval (0V, 10V). 

 

 

Figure 4: Data set for direct continuous-time identification 

 

After the application of the DCTI approach on first half experimental sampled data of 

identification (i.e.: 30 minutes), the identified models of the aerothermic process suggests that 

the dynamic relationship between the measured inputs and the measured outputs, for the two 

loops, are linear and first-order plus dead time (FOPDT). Its transfer function is given by the 

following equation: 

1s

Ke
)s(G

s

+
=

−

τ

θ

    (1) 

where K represents the steady-state gain, τ  is the time constant, and θ  is the time delay of the 

system. 

The identified multivariable transfer functions of the aerothermic process are given by the 

following system equation [1-2]: 
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This equation can be shown as a schematic diagram in figure 5 

 

 
Figure 5: Schematic illustration of a partial interaction 
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represent respectively the continuous process transfer functions of first loop, the continuous 

process transfer functions of the second loop and the continuous transfer function of the 

process interaction. 

The negative gain in the interactive transfer function, H12(s), implies that the air temperature 

behaves in the opposite way. In fact, the interaction effect tends to reduce the air temperature 

when the air flow increases. 

 To evaluate the quality of the estimated transfer function models, a cross-validation 

procedure has been applied to the remaining experimental data were not used to build the 

model. Cross-validation result is plotted in Figures 6. From this figure, it may be observed 

that there is a relatively good agreement between the measured and the simulated model 

output. The identified model has been validated using the remaining experimental data which 

were not used to build it. 
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Figure 6: Cross-validation results (black: measured output; blue: simulated output) 

 

Subsequently, the continuous-time transfer function model (2) is converted to a discrete time 

state-space model which will be used, in the next section, as the basis for the state space 

model predictive controller. The discrete time state space model, describing the aerothermic 

process, is given by the following equation: 
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The matrix Dm is equal to zero, u = [u1, u2]
T
 and y = [y1, y2]

T
 . The system described by these 

matrices is stable, completely observable and controllable. 

 

IV.  CONTROL PROBLEM 

 

IV-1 STATE SPACE MODEL PREDICTIVE CONTROLLER 

 

The centralized discrete state space model predictive control used in the control of the 

aerothermic process is designed using Laguerre function functions [16]. As in most industrial 

control, to ensure outputs steady-state error free, it is embedded with two integrators. Then, 

the augmented aerothermic process model is introduced as: 
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where 
 

m=2, n=2 and l=5. I is the unit matrix, 
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For notational simplicity, equation (4) is given by the following equation: 
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where x, A, B and C are respectively the state vector and matrices corresponding to the forms 

given in the equation (4). 

 
The objective of the CDSSMPC controller is to find the optimal control which minimizes the 

following cost function [16]: 
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where Q ≥0 and R>0 are symmetric positive definite matrices. 

The optimal solution of the equation (6) is given by the following equation [16]: 
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For simplicity of the expression, the vector η is expressed as: 
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The L(i)
T is the transposed Laguarre function vector. 

After obtaining the optimal coefficient vector η , the receding horizon control law is realized 
as 
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Since in the case of the aerothermic process the state variable x(k) is not measurable (i.e.: C is 

different to the identity matrix), the linear discrete time observer is used to estimate it from 
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available output. The control law is then computed using the estimated state variables given 

by the following equation: 

 
))k(x̂C)k(y(K)k(uB)k(x̂A)1k(x̂ obs −++=+ ∆                             (10) 

 

where Kobs is the Kalman filter gain Obtained by solving recursively (for i = 0, 1, . . .) the 

following equation: 
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α and β are the matrices to be chosen by the user. 

 

IV-2 DECENTRALIZED PI-D CONTROLLER 

 

In the multi-variable processes where the interactions usually exist among the loops, a sudden 

change in the set-point of one loop will be a large load disturbance to the other loops. Hence, 

when these processes are controlled by the conventional PID controller without taking into 

account of these interactions, the derivative term can become very large and thus provide a 

“derivative kick” on the variable control [1]. In the aerothermic process case, an abrupt 

change in the air flow affects considerably the air temperature behaviour. Therefore, the 

interaction caused by the second loop needs to be eliminated. To do it, the aerothermic 

process must be decoupled into separate loops. 

Generally, there exist two decoupling approaches: the complete decoupling and the partial 

decoupling. In the complete decoupling, all decouplers are used. While in the partial 

decoupling; only some decouplers are used and the remainder decouplers are set equal to zero. 

Among the advantageous of the partial decoupling, we note its tendency to be less sensitive to 

modelling errors compared to the complete decoupling [22]. The partial decoupling is an 

attractive approach for control problems where one of the controlled variables is more 

important than the other or where one of the process interactions is absent. In the aerothermic 

process case, the partial decoupling is considered in order to eliminate the interactions caused 

by the second loop on the first one. This partial decoupling is represented by the Figure 7. 
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Figure 7: Decoupled system 

 

where F represent the ideal decoupler. 

To eliminate the interaction between U2 and Y1, after some simple mathematical 

manipulations, the expression for the ideal decoupler is given by the following expression [1-

2]: 
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In this paper, the partial static decoupler is used to decoupling the two aerothermic process 

loops [1-2]. The design equations for the decoupler can be adjusted by setting (s = 0), i.e. the 

process transfer functions are simply replaced by their corresponding steady state gains. 

Hence, the expression for the ideal decoupler given by the equation 3 becomes: 
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In this paper, the decentralized PI-D controller is considered to reject the interaction effect 

between the temperature and the air flow. Its transfer function in the Laplace domain is given 

by the following equation [23]: 
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where U(s) is the manipulated variable, Y(s) is the output variable and E(s) the error signal. 

Parameters Kc, iτ , and dτ  represent proportional gain, integral gain and derivative gain 
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respectively. dw  is the parameter who can prevent the “derivative kick”, which happens when 

a step set-point change enters. 

With dw =1, the equation 4 represents the conventional PID controller given by the following 

equation: 

 

)s(E)
s1

s

s

1
1(K)s(U

d

d

i
c

ατ

τ

τ +
++=     (14) 

 

But with dw =0, the equation 14 is transformed to a PI-D controller given by the following 

equation: 
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As shown by the equation 15, the derivative action does not directly operate on reference 

changes. But, it is entirely applied to the process output; which represents the newness of the 

traditional PID controller restructuring. 

To calculate the PI and PI-D parameters, the Internal Model Control (IMC) tuning rules is 

adopted [23]. It is used most frequently in industrial processes because of its many 

advantages, including simplicity, robust performance, and its analytical form which is easier 

to implement in real time. The PI-D controller parameters are given by the table 1: 

 
Table 1: IMC tuning rule 

controller Tuning parameters 
Kc iτ  dτ  λ  
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where K represents the steady-state gain, τ  is the time constant, and θ  is the time delay of the 

system. 
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V. EXPERIMENTAL RESULTS 

 

The setup of the two controllers described in the previous section was first tested in 

simulation using the model obtained from identification. This investigation was done 

especially to evaluate the computational complexity of the two controllers and to find for each 

of them the tuning parameters before its implementation in the real aerothermic process.   

For the CDSSMPC, the scaling factor and the number of terms used in the Laguerre functions 

are chosen respectively to be a=[0.5 0.5] and  N=[2 2]; Both scaling factors are selected to be 

approximately on the same orders of the open-loop dominant poles of the aerothermic 

process. The prediction horizon parameter is chosen to be Tp=50; and the weighting matrices 

Q and R are chosen respectively to be Q=C
T
C and R=I2x2. The observer is given by the 

following result 
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For the DPI-D controller, the following table summarizes the turning parameters for the first 

and the second loop [ramzi2]. 

Table 2: parameters of the PI-D and PI controllers using IMC tuning rules 

controller Tuning parameters 
Kc 

iτ  dτ  λ  

PI 1.0428 1.9302 - 2 
PI-D 1.0804 37.5716 3.1740 2 

 

The implementation of the CDSSMPC, the conventional PID and the DPI-D controllers, in 

real time, use the Humusoft MF624 Data Acquisition Card of 14-bit Analog to Digital (A/D) 

conversion module, plugged into ISA port. The signals are transmitted between the PC and 

the Aerothermic Process via a 37-way cable and connector block. The robustness of the two 

controllers is evaluated by changing the set-point of the ventilator speed at time 200 second 

and 400 second. 
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Three experiences are then envisaged in order to challenge the performances of the 

Decentralized PI-D controller, the Centralized DSSMPC and the conventional ones. In the 

first and the second experience, the PI controller is used to regulate the air flow since this loop 

has generally very fast dynamics and its measurement is inherently noisy; while, the air 

temperature is regulated respectively by the DPI-D and the conventional PID controllers. In 

the third experience, the two aerothermic process loops are simultaneously controlled by the 

Centralized DSSMPC controller.  

Figures 8, 9 and 10 represent respectively the aerothermic process controlled by the 

Decentralized PI-D and PI techniques, the conventional PID and the Centralized DSSMPC 

techniques. In all these figures, (Y1,Y2) represent the measured outputs or controlled 

variables, (U1,U2) represent the manipulated inputs and  (R1,R2) represent the  set-points. As 

shown in this figure 8, three controllers are used in the DPI-D controller: the PI-D controller, 

the conventional PI controller and the decoupler noted by F. noting that the input-signal to the 

decoupler, which is designed to compensate the undesirable process interactions, is the output 

signal from the feedback conventional PI controller. 

 

 
Figure 8. Block diagram of decentralized PI-D applications 

 

 

Figure 9. Block diagram of conventional PID applications 
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Figure 10. Block diagram of CDSSMPC applications 

 

Figures 11 and 12 present the results of the three control techniques. It is apparent from these 

figures that the decentralized PI-D controller provides a good performance. The robustness 

and the effectiveness of the decentralized PI-D controller are confirmed by the elimination of 

the interaction effect on the air temperature variable compared to the conventional PID and 

the Centralized DSSMPC controllers. It is obvious that the decentralized controller affords a 

good robust performance consistently of this kind of process.  

 

 

Figure 11: Top figure: closed-loop air temperature response; bottom figure: Closed-loop 

heater grid control response. (red: set point, green: Decentralized PI-D controller, blue: 

Centralized DSSMPC controller, black: conventional PID controller). 
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Figure 12: Top figure: closed-loop air flow response; bottom figure: Closed-loop ventilator 

speed control response (red: set point, green: PI controller, blue: Centralized DSSMPC 

controller, black: conventional PID controller). 

 

VI. CONCLUSIONS 

 

In this paper we have described both a Centralized Discrete State Space Model Predictive 

Control design approach and Decentralized PI-D controller for a pilot scale aerothermic 

process. The Continuous time State Space Identification is used to identify the basic model of 

the two approaches. For the CDSSMPC controller, an observer based on the Kalman filter is 

used to estimate the aerothermic process state variable. The design of this approach is based 

on the Laguerre functions. The design of DPI-D controller is based on the combination of the 

conventional PI-D controller and the static decoupler approach. The control systems are 

implemented using the Humusoft MF624 Data Acquisition Card of 14-bit Analog to Digital 

(A/D) conversion module, plugged into ISA port. 

Experimental results demonstrate robust performance of the Decentralized PI-D controller 

compared to the Centralized DSSMPC and the conventional PID ones for tracking set point 

changes and rejecting interactions effect. The DPI-D controller constitutes a worth extension 

of the mono-variable control methods and an alternative to the basic classical control for the 

system with lower level such as the aerothermic process. 
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