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Abstract- The purpose of this paper is to review the literature on modeling and previous control 

strategies of the  hydraulic actuator system proposed by most of the researchers around the world. 

Before comes to the main discussion, some background information related to hydraulic actuator will 

be presented. This review includes a short summary and conclusion for hydraulic actuator system. The 

repercussion of this review is for future inventions of a better and robust hydraulic actuator system.  

 

Index terms: hydraulic actuator system, motion control, load variation, nonlinear system, modeling, 

controller. 
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I. INTRODUCTION 
 

 

Electro-Hydraulic Actuator (EHA) system is one of the important drive systems in industrial 

sector and most engineering practice due to its high power to weight ratio, stiffness response, 

high and good and smooth fast. Recently, with the research and development of mathematics, 

control theory, computer technology, electronic technology and basic theory of hydraulic, 

hydraulic control technology has been developed and has been widely used in many applications 

such as manufacturing systems, materials test machines, active suspension systems, mining 

machinery, fatigue testing, flight simulation, paper machines, ships and electromagnetic marine 

engineering, injection molding machines, robotics, and steel and aluminium mill equipment [1]. 

Due to its applications, the highest performance of the electro-hydraulic actuators on position, 

force or pressure is needed. However, the system is a highly nonlinear one due to factors such as 

friction, load variation and leakage [2].The main body of this review is consists of (II) hydraulic 

actuator motivation, (III) hydraulic actuator modeling, (IV) hydraulic actuator controller design, 

and (V) short summary and conclusion for hydraulic actuators will be discussed in the last 

section. 

 

II. HYDRAULIC ACTUATOR MOTIVATION 
 

 

Hydraulic actuator is one of the major drives in industrial sector and engineering practice due to 

its redundancy (high power-to-weight ratio, fast and smooth response, high stiffness and good 

positioning capability) in certain applications [3-4]. This has made the hydraulic actuator a 

focused study and a variety of control algorithms have been proposed in order to overcome its 

nonlinear dynamic behavior [5-6]. The hydraulic actuators system is the most appropriate choice 

for an active suspension system [6], due to its low construction, maintenance cost and high 

power-to-weight ratio. The hydraulic actuator system also has the ability to  produce a very large 

force and torque in any system [7].Some examples of the hydraulic actuator system application 

that require a large force and torque are electro hydraulic positioning system, industrial hydraulic 

machines[8], robot manipulators [9], hydraulic elevator [10],etc. Due to high precision position 

controllers, hydraulic actuator systems are applied in specialized manufacturing equipments or 
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test equipments such as simple shear apparatus utilized for soil testing [11-12]. Although there 

are a number of advantages and applications that utilize hydraulic actuator systems, there are 

some weaknesses that complicate the development of hydraulic actuator system controller since 

the system is a highly nonlinear system. Aside from the nonlinear behavior, the hydraulic 

actuator system also suffers from a large extent of model uncertainties [4]. The uncertainties can 

be classified into two main groups which are parametric uncertainties and uncertain 

nonlinearities. Example of parametric uncertainties is large changes in load and the large 

variations in hydraulic parameter such as bulk modulus due to component wear or temperature 

change. Meanwhile, external disturbance, leakage and friction are called uncertain nonlinearities 

[4]. These uncertainties can cause hydraulic actuator system controller to be unstable or to have 

degradation in its performance. 

 

III. HYDRAULIC ACTUATOR SYSTEM MODELING 

 

Modeling for hydraulic actuator system can be done via system identification technique or 

theoretical mathematical analysis. Various approaches have been introduced and used for 

hydraulic actuators modeling. System modeling can be based on system physical law or system 

identification method which formally known as a black box identification. System physical law 

that is performed requires expert knowledge and understanding about the system itself. Thus, this 

makes many researchers try to avoid using this method as an option in developing a system 

model. In contrast with system identification, it only requires a set of stimulus response data and 

no prior knowledge about the system in order to construct the model. A numbers of researchers 

use this technique or method to build the model of hydraulic actuator.  

 

a. Theoretical Mathematical Analysis 
 

The diagram of Electro-hydraulic servo system equipments involve servo valve, hydraulic 

cylinder and load attached at the end of the piston can be represented as shown in Figure 1 

[13].The actuator is responsible to deliver force and motion to the external load or the output 

device of the hydraulic actuator system. 
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Figure 1. Electro-hydraulic servo valve. 

 

The hydraulic cylinder above consists of a single rod and a single ended piston with a double 

acting cylinder. From the figure, Ps is the hydraulic supply pressure, PT is the return pressure, P1 

and P2 are the fluid pressure in the upper and lower cylinder and xv is the spool valve 

displacement. The hydraulic cylinders will extend or compress when a difference between P1 and 

P2 exists. Hydraulic actuator dynamic which include load and servo valve dynamics manage to 

describe characteristic and behavior of the hydraulic actuator system [5].And the dynamic 

equation of above system can be written as: 

 

                              (1) 

 

                               (2) 

 

The hydraulic actuating force, Fa and the hydraulic friction force, Ff are the commonly derived 

forces in hydraulic system. Since load environment, control input voltage, cylinder pressure, etc. 
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can influence the hydraulic actuation force, Fa,  the actuating force becomes a nonlinear function 

[13]and can be represented as: 

 

                          (3) 

 

The derivative of the load pressure, PL or the pressure across the actuator piston is given by the 

total load flow through the actuator divided by the fluid capacitance [6]: 

 

  

   
                                  (4) 

 

         
               

 
                   (5) 

 

Equation (5) shows the relationship between spool valve displacement, xv and load flow, QL. 

Therefore from (2) and (5), hydraulic dynamic of actuating force cylinder can be written as: 

 

                  
               

 
                    (6) 

 

where, 

 

                    
     
  

            
     
  

               
   
  

   

 

The input servo valve, u controls the spool displacement dynamic equation of a servo valve, xv 

[13].The relationship can be simplified as: 

 

    
 

  
                           (7) 

 

From (1) to (7), state equation of the hydraulic actuator system can be represented as: 
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             (8) 

 

if the selected state variables are x=[x1, x2, x3, x4]
T
=[xp, vp. PL. xv]

T 
[13]. 

 

Figure 2 shows schematic diagram of another example of single rod, single ended hydraulic 

cylinder as the same as that in [4]. The goal of the work in [14], is to have the inertia load to track 

any specific motion trajectory as close as possible as a machine tool axis in [15]. 

 

 

Figure 2. Schematic diagram of single rod, single ended hydraulic actuator. 

 

Dynamic inertia load of the above system can be described as: 

 

                                              (9) 

 

where, b is a combined coefficient of the modeled damping and viscous friction forces on the 

load and cylinder rod, Ffc is modeled Coulomb friction force and   (t, xL,   L) is lumped uncertain 

nonlinearities due to external disturbance, un-modeled friction forces and other hard-to-modeled 

terms. 
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As stated in [7], Q1, the supply flow rate to the forward chamber and Q2, the return flow rate to 

the return chamber, have a relationship with the spool of valve displacement of the servo valve, 

xv. The dynamics of cylinder oil flow can be written as (10) if the external leakage cylinder is 

neglected [7]: 

 

                            
                  
                  

  

                  (10) 

                            
                  
                  

  

 

where, kq1 and kq2 represent flow gain coefficient of the servo valve, Ps is supply pressure of the 

fluid and Pr is tank or reference pressure. Constant scaling factors Sc3 and Sc4 are introduced to 

the pressure and valve opening factors in order to facilitate the gain turning process and to 

minimize the numerical error. Then the scaled pressure becomes       
 

   
             

 

   
       

     
 

   
            

 

   
              

 

   
   . The state variable is defined as; x=[x1, x2, x3, x4, 

x5]
T
=[xL,   L,    1,    2,   v]

T
. Thus, the entire system can be expressed as [7]: 
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  and nonlinear function is defined as [7]: 
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                  (12) 

   
   

   
                               

                   

                   
  

 

Many researchers have already discussed about the effect of servo valve dynamic [16] as this 

process require additional sensor in order to obtain the spool position. And since minimal 

improvement is achieved for position tracking, researchers tend to neglect servo valve dynamic 

as in [17]. 

 

Dynamic equation that describing actuator movement can be represented as [18]: 

 

                                  (13) 

 

where y is piston’s displacement, m is inertia of the moving part, d is equivalent viscous damping 

coefficient, Ai and Ao represent piston effective area, pi and po are input output line pressure. 

From [19], hydraulic actuator movement given by Newton’s second law can be written as:  

 

                                    (14) 

 

Meanwhile the nonlinear equation that describe the fluid flow in the valve can be written as [18]: 
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where qi and qo represent the fluid flow into and out of the valve, cq is orifice coefficient of 

discharge, ρ is mass density of the fluid, ps and pe are pump pressure and return pressure 

respectively, ω is area gradient that relates the spool displacement and xsp is orifice displacement. 

Equation (14) can be linearized by using a Taylor series expansion about zero spool displacement 

opening point and neglecting the higher order terms [18] and can be written as: 

 

     
       

    

                  (16) 

     
       

    

          

Flow and pressure sensitivity gains are represented by   
    

   and   
    

   respectively, where 

these two variables are load-dependent and pressure dependent variables [18]. 

By neglecting the leakage flow across the actuator’s piston, continuity equation oil flow through 

the cylinder can be given as [18]: 

 

     

  

  
 

  
  

   
  

 

                  (17) 

     

  

  
 

  
  

   
  

 

             

where Vi and Vo represent volume of fluid trapped at the side of the actuator and βe is the 

effective bulk modulus of the hydraulic fluid. The effective bulk modulus is highly dependent on 

load condition, air contains in the oil and also the oil temperature. The relationship between spool 

displacement, xsp and valve input voltage, u can be described as first-order model as in (18) 

where this dynamic is adequate for many industrial application [18]. 

 

     
  

 
    

   

 
                 (18) 
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where, ksp and τ represent the valve gain and the time constant respectively. By transforming 

equation (13)-(18) into Laplace domain, the transfer function model of the open-loop system can 

be written as[18]: 

 

                                       (19) 

 

where, 

 

      
            

                        
    

  
              (20) 

 

and 

 

      
       

                  
    

  
              (21) 

 

Here   
    

   and   
    

   are considered as uncertain parameters and they are simply replaced by ks 

and kp. 

 

Figure 3. Electro hydraulic system schematic diagram. 

 

Figure 3 shows schematic diagram of electro hydraulic system that has been utilized for 

experiment in [11][20][21][22]. The oil stored in the tank feeds the system pump. The supply 
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pressure, Ps is kept constant by relief valve and accumulator; however, assuming that the 

variation in the spring behavior of the relieve valve resulting the non-constant value of Ps. Electro 

hydraulic servo valve is moving by the power of electrical control input. And the motion of the 

oil flow from the pump through the hydraulic motor is controlled by the spool motion. And the 

bidirectional hydraulic motor is driven the load to the desired control objectives. A sensor will 

measure the angular position which is the output signal of the system. The electro hydraulic 

system can be described by below fourth-order nonlinear state space model: 

 

                             (22) 
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                           (25) 

 

                           (26) 

 

where,x1, x2(t), x3(t) and x4(t) are angular displacement, angular velocity, motor pressure 

difference due to the load and servo valve opening area respectively. In (22) – (26), u(t) is control 

current input, y(t) is system output, J is total inertia of the motor, Dm is volumetric displacement 

of the motor, B is viscous damping coefficient, TF is Coulomb friction coefficient, TL is load 

torque which we assume to be constant and unknown,  is fluid bulk modulus, Vm is total oil 

volume in the two chamber of the actuator, Cd is flow discharge coefficient, ρ is fluid mass 

density, Csm is leakage coefficient, Ps is supply pressure, K is servo valve amplifier gain and τ is 

the servo valve time constant. The continuous differentiable sigmoid function is used to 

approximate non-differentiable sign function in (22)-(26) and result in: 

 

                     
         

                             (27) 
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By doing this, electro hydraulic system can be differentiated and the use of feedback linearization 

approach is allowable [21]. This linear feedback linearization can help to ensure stability and a 

good performance of the system if certain conditions of the system are met [11]. This feedback 

linearization approach is used in [21][23], and has shown a good improvement in stability and 

system performance.  

 

From [24], hydraulic fluid can be represented by (28) where V is chamber volume. 

 

     
  

  
                  (28) 

 

Since hydraulic fluid is compressible to some limit, it should be taking into account of the 

actuator dynamic. Thus, we can write compressibility equation as follows [19]: 

 

 

  
    

    

  
                            (29) 

 

where,  

 

                                  (30) 

 

In [25-26], the linear differential equation that describe actuator-valve dynamic can be derived 

from (2) and (6): 

 

    
 

 
                                (31) 
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where b is the viscous damping of the load and D is the external disturbance of hydraulic system. 

Laplace transform of (31) and (32) for zero initial condition will produced input output 

relationship of the hydraulic system as: 

      

                                        (33) 

 

where, 

 

     
     

                     
 

                  (34) 

      
         

                     
 

 

b. System Identification 
 

Another approach of getting the mathematical model of a system is by using the system 

identification technique. System identification is the process to obtain system model through 

system’s input-output (stimulus-response) data. Term identification was first introduce by Zadeh 

[27], referring to problem of identifying the input-output relationships based on experimental 

data sets. In contrast to physical law, this technique does not require any expert knowledge about 

system under study. Thus, this makes this technique more popular due to easy application. 

There are two model structures involved in system identification which are “black box model” 

and “grey box model”. For “black box model”, a system model is developed without the need of 

physical model interpretation. Meanwhile for a “grey box model”, a system model is developed 

by considering friction force happened between the piston pressure equations in the actuator 

chamber [28]. One of the system identification processes is to generate stimulus signal to excite 

the operating region of the system [29]. The stimulus signal is generated by computer and sent to 

servo valve of hydraulic system through DAQ card. Servo valve will mode the piston position 

accordingly by controlling the hydraulic fluid. And draw wire sensor is used to capture position 

of the piston. The input output data is collected to identify the model. Once the model is obtained, 
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validation of the model is needed to ensure that the obtained model is fits with the observed 

system behavior. Most common validation processes are done by comparing model performance 

with real system performance. Best fitting percentage is used as a validation standard, where the 

higher fitting percentage indicate a more accurate model [25]. 

In [29], the researcher uses system identification technique with the aid of System Identification 

Toolbox in MATLAB and System Identification Toolkit in LabVIEW to obtain an electro 

hydraulic actuator system model. The obtained model is validated with the actual performance of 

real electro hydraulic actuator system. The process of system identification to obtain system 

model is as discussed above. The final result shows that nonlinear electro hydraulic system can 

be modeled by using system identification approach. Both System Identification Toolbox in 

MATLAB and System Identification Toolkit in LabVIEW perform the same way in identifying 

electro hydraulic system model. 

 

IV. HYDRAULIC ACTUATOR CONTROLLER DESIGN 

 

Many types of controllers have been used by researchers in order to increase robustness and 

stability of hydraulic actuator system. This includes robust control, adaptive control [30], state 

feedback control, variable structure systems control, modern control theories [31][32][33][34]. 

Previously, a majority of researchers used linear control technique in hydraulic actuator control 

system [22][35][36]. Examples of linear control technique that  have been used before are 

feedback linearization technique [37] and classic proportional-integral-derivative controller 

[38][39]. However, linearization technique may degrade some important dynamic information of 

hydraulic actuator system. Thus, this has made a nonlinear control technique an efficient 

controller method for hydraulic actuator system. Example of nonlinear control technique that had 

been proposed before are sliding mode control [40][41], nonlinear back stepping control for 

position tracking [20] and also for force tracking. This section will give a brief discussion on 

controller methods that have been used or proposed as hydraulic actuator system controllers. 

 

a. PID Controller 

 

A suitable controller needs to be designed in order to acquire the highest performance of the 

electro-hydraulic actuator. Many researchers have used advanced control strategies to improve 
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the system performance mainly in tracking control and motion control ability. However, their 

studies show that the PID control laws are sufficient to control the hydraulic actuator as desired. 

In [42], the feedback control system design using PID controller has been adopted because it is 

simple and robust when applied within specified operating range. To ensure a good performance 

of the controller, appropriate values for each parameter Kp, Ki and Kd must be tuned optimally. 

PID tuning approach such as Ziegler-Nichols[43] and Nelder-Mead [44] requires information of 

ultimate gain and ultimate period of oscillation in order to calculate the controller parameters. By 

using Ziegler-Nichols , [43] shows the increment of the best fit of the model from 92% to 98%. 

But, a slight different between input and output happened because the electro-hydraulic system 

which is nonlinear model is modeled in linear model and some nonlinearity and uncertainties 

characteristic are ignored. While in [44], the Nelder-Mead have been applied to tune the PID 

parameters. The PID controller seems feasible to control the electro- hydraulic according to 

desired reference signal but the speed of the response can be improved further for better tracking 

control. 

 

b. Fuzzy controller 
 

Since the first introduction of fuzzy controller by Mamdani [45], a lot of researchers  have 

applied this controller method in their research study especially in controlling hydraulic actuator 

system [46][47]. In addition, fuzzy controller has been widely applied to industries and small 

application around us, such as washing machines, elevators, automobiles, etc.  

 

 

Figure 4. Schematic diagram of a typical fuzzy logic controller 

 

A typical fuzzy controller consists of three basic parts as shown in Figure 4 [1] ;  

1) Input signal fuzzification, which transform continuous input signal into linguistic fuzzy 

variable such as small, medium and large.  
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2) Fuzzy rules, consists of linguistic control rules which are conditional linguistic statements of 

the relationship between input and output, so that the property of fuzzy controller emulate the 

behavior of a human operator [48]. 

3) Defuzzification converts inferred control action back to a continuous signal. And this makes 

fuzzy logic  sometimes referred to as continuous logic [49]. In fuzzy controller, output error, e 

and change on output error, ce of a system  are taken as the controller inputs and defined as [48]: 

 

                               (35) 

 

                                         (36) 

 

where sp and yare set point and plant output respectively, k and k-1 indicate present state and 

previous state of a discrete time system respectively. Control rules in fuzzy controller reflect 

operators understanding of the system process, so that fuzzy controller can be an expert in 

controlling the system. Completeness of fuzzy control is when a proper control action for any 

fuzzy state is generated [48]. 

 

In 1994, a multiregion fuzzy logic controller is developed for nonlinear process control [50]. The 

process that needs to be controlled is divided into four fuzzy regions which is high gain, low 

gain, long time constant and small time constant. Then a fuzzy logic controller is designed based 

on the information from each region. Auxilliary process variable is used to detect region 

operating process.  Other than control error and change in control error as input, another variable 

input is auxiliary variable. And nonlinear relation of fuzzy controller can be described as: 

 

                               (37) 

 

where AV represent Auxilliary variable. A fuzzy rule for multiregion fuzzy controller can be 

described as: 

 

                                                                (38) 
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where Ai, Bi, Ci and Di are adjective for AV, e,    and    respectively. These adjective can be a 

descriptor to the auxiliary variable. To achieve smooth transition between regions, the tuning 

procedures listed below are to be followed: 

 

1) Scaling factor is tuned for the low gain region. 

2) Position of the inner membership function for    is tuned for high gain region. 

3) Membership function of the auxiliary variable over all regions is tuned to achieve smooth 

transition of control. 

4) Membership function and fuzzy rules are tuned to achieve desired control performance. 

 

The pH CSTR (Continuous Stirred Tank Reactor) for pH titration is used for Multiregion fuzzy 

tester. The pH value is used as auxiliary variable and can be identified as: pH-high region, pH-

medium region, and pH-Low region. The three regions can be defined based on the steady state 

relation as shows in Figure 5.  

 

 

Figure 5. Steady state relation of pH value versus acid flow rate [2] . 

 

To examine how the three region fuzzy controller performs, a disturbance is injected to the 

system. The source of disturbance that is used here is base concentration (C2) and figure 6 shows 

the three region fuzzy controller performance. Both positive and negative disturbance changes are 
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applied while pH value is fixed at 7. It is seen that this controller can perform well with the 

existence of disturbance.  

 

 

Figure 6.  Step response of pH CSTR controller by Multiregion fuzzy controller. 

 

In [48], a design of fuzzy controller is presented for real time controlling of a hydraulic servo 

system. In the control rules, seven linguistic fuzzy set are applied for all the fuzzy input and 

output variable. These seven linguistic fuzzy set are: 

 

NB: Negative Big 

NM: Negative Medium 

NS: Negative Small 
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PB: Positive Big 

PM: Positive Medium 

PS:  Positive Small 

ZE: Zero 

 

Once the linguistic fuzzy set is defined, membership function is needed to describe the fuzzy sets 

for fuzzification. In this research “trapezoidal” membership function is applied to define all the 

fuzzy set input output (Figure 7). Center point of the fuzzy sets NB, NM, NS, ZE, PS, PM, PB 

are -6,-6,-2, 0, 2, 4, 6 respectively. And the membership function can represent as[48]: 

 

                        

 

                       
           

   
 

 

                                            (39) 

 

                                
          

   
 

 

                         

 

 

Figure 7. “Trapizoidal” membership function. 
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Then fuzzy inference “max-product” inference method is adopted to compute membership value 

and it is defined as [48]: 

 

                                                  (40) 

 

where    and     are given control situations;   ,    , and    are the linguistic fuzzy set of rule   

  corresponding to input variable  ,    and   respectively.       is the membership value of the 

center point   . Then center-of-gravity defuzzification method is use to generate a numerical 

controller output. This method is defined as: 

 

    
         
  

        
                (41) 

 

where u is numeric inference result.  To generate a proper controller output, (40) and (41) is used. 

Tuning of scaling factors and quantization procedure are applied in this controller development. 

The details of the research above can be found in [48]. And finally the designed fuzzy controller 

is applied to the real time control of a hydraulic servo system with the load and disturbance taken 

into account. And the output result shows the outstanding performance in control application. 

 

 

c. Adaptive Robust Controller 
 

Adaptive robust controller is a valid technique to solve for system uncertainties. Many kind of 

adaptive control schemes have been introduced in hydraulic control system in order to 

compensate its uncertainties behavior. In linear adaptive controller, assumption are made in such 

that original control volume between servo valve and cylinder, including volumes between the 

servo valve, pipelines and cylinder chamber, are certain and known [7]. As in previous adaptive 

robust controller, it is always assumed that the system’s unknown parameters occur linearly, 

however in practical this situation is impossible. To prevent this, nonlinear adaptive robust 

controller is presented. As in [7], experiment is done to test the performance of nonlinear 

adaptive robust controller and the result had proven that the proposed controller manage to obtain 

a better performance in position signal tracking trajectories, even with the existence of nonlinear 

parameter compared to linear adaptive robust controller. 
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In recent years, indirect adaptive controller schemes have been widely used to achieve stability 

and convergence of the controller system. Example of indirect adaptive controller is in [19] to 

control the position of electro hydraulic servo system. This controller is chosen among other 

adaptive controller because it is able to identify the real system value. To test this, the output 

from this controller is compared with the real time non-adaptive back stepping controller. And 

the results show that during parameter variation, indirect adaptive controllers are able to track the 

desired reference signal compared to non-adaptive back stepping controller. In [51], indirect 

adaptive controller is proposed to control velocity of an electro hydraulic servo system subjected 

to un-modeled dynamic and load disturbance. A series of simulations are done. The controller is 

fairly robust to control system and manages to increase performance characteristic of electro 

hydraulic servo system compared to a conventional PID controller. Thus, it is proven that the 

indirect adaptive controller has successfully controlled and monitors electro hydraulic servo 

system. Figure 8 shows flow diagram of an indirect adaptive robust controller. State variable, x1, 

x2, x3, x4 and control signal, u are sent to parameter identification block. Once the system 

parameters are identified, they are sent to back stepping control block to generate control signal. 

Then the control signal is sent to electro hydraulic system and hydraulic actuator is forcing to 

track the desired trajectory xref. This flow is repeated for each sampling time. 

 

 

Figure 8. Flow diagram of an indirect adaptive robust controller 
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Other examples of controller that applies the adaptive robust controller scheme are; 1, A 

discontinuous projection-based adaptive robust controller that is presented in [4]. This controller 

considers the effects of parameter variations coming from inertia load and other hydraulic 

parameters, as well as effects of hard-to-model nonlinearities such as friction force and external 

disturbance. From the experiment, the controller manages to achieve a guaranteed transient 

performance, high tracking accuracy, zero error dynamics for tracking any nonzero constant 

velocity trajectory. This result had verified the high performance nature of discontinuous 

projection-based adaptive robust controller. 2, High performance robust motion control of single 

rod hydraulic actuator system is considered in [4], by using discontinuous projection based 

adaptive robust controller. This research is a continuation from the work done in [4, 56-58]. From 

the research, it is proven that this controller manages to handle all the uncertain nonlinearities 

such as external disturbance and uncompensated friction force in hydraulic actuator system and a 

robust motion controller for hydraulic actuator system is presented. 3, To obtain a better 

performance in velocity control of nonlinear hydraulic servo system, adaptive model following 

control is proposed in [22, 59-61].  This controller is designed to track the desired velocity of 

hydraulic servo system as closed as possible. And from a series of simulations, results show the 

controller is robust to any unknown disturbance and yields a good performance in following a 

desired model response. 

 

d. Hybrid Controller 
 

There is several control approaches used in control system design as applied in classical, modern 

and intelligent systems. The new control strategies have been studied, implemented and 

suggested in many industrial applications. Every control system technique has its advantages and 

disadvantages. Thus, the trend nowadays is to implement hybrid systems consisting of more than 

one types of control technique. The ideal controller would be robust against parameter variations 

and lead to better performances. Recently, research on fuzzy logic control has been actively done 

and utilized such as applied hybrid of fuzzy with PID and adaptive PID control using fuzzy  

[1][38][52][53][54].Their studies show that the hybrid control laws are sufficient to control the 

hydraulic actuator as desired. 
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In [1], the development and implementation of self-tuning fuzzy controller to control the position 

of hydraulic actuator have been discussed. Feedback control system design using PID controller 

has been adopted in this study due to its simple and robustness when applied within specified 

operating range. For the result, it shows that the tracking error has been effectively reduced and 

the self-tuning fuzzy PID controller performance is better than conventional controller. Another 

implementation of self-tuning fuzzy PID is explained in [53], where the controller is used to 

control the position of an electro hydraulic actuator system. According to the results presented, 

when the self-tuning fuzzy PID controller is implied into the system, the response become 

significantly faster and achieves better tracking response than conventional PID controller. It is 

indicated from faster rise time, faster settling time, less overshoot and without steady state error. 

However, the proposed control needs to develop by including disturbance and any others 

nonlinearity and uncertainties in the design with various frequencies in reference input signals 

 

e. Other Controller Types 
 

Most of the adaptive controllers recently developed use a linearized model for the system. And an 

adaptive controller that is based on a linearized system model is always unstable [22]. An 

alternative to the adaptive controller is the variable structure controller. This controller is robust 

to large parameter changes. However, selection and tuning of the required dead band is a major 

problem in developing this controller. If too small dead band is selected, the nearly discontinuous 

control excites un-modeled dynamics present in the system. And if too large dead band is 

selected, degradation on tracking performance will occurs. In [24], a nonlinear tracking control 

law is derived from a Lyapunov function to provide exponentially stable force trajectory tracking 

in hydraulic system. This control law is similar in [37]. After performance in simulation mode is 

acceptable, the controller is tested on existing hydraulic test system. And the controller manages 

to provide excellent force and position tracking even in the presence of system’s disturbance. 

 

In [11], feedback linearization-based controller is developed to control supply pressure variations 

in rotational electro hydraulic servo system. And based on the simulation result, it shown that 

feedback linearization-based controller is robust for variation in rotational electro hydraulic 

supply pressure. There are several types of feedback linearization controller such as full-state 

feedback linearization controller, input-output feedback linearization controller, partial input 
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feedback linearization controller and etc.  These controllers have been used in [21][36] for electro 

hydraulic servo system controller and had shown an improved performance compared to a 

conventional PID controller.  

 

The robust force controller via nonlinear quantity feedback theory is employed in [55] to control 

hydraulic actuator force in the presence of system uncertainties and nonlinearities. There are two 

design methodologies to generate a set of acceptable input-output time history. This input-output 

time history is necessary in designing a robust quantity feedback theory controller. The first 

method is based on experimental input-output measurement of an acceptable system response. 

And the second method, nonlinear mathematical is used for the derivation of input-output 

histories. The result of the research has clearly shown that the robust force controller via 

nonlinear quantity feedback theory could provide an effective tool for the control design of 

hydraulic system. Moreover, this controller is experimentally tested on a real industrial problem, 

which has been rarely reported in the literature. 

 

In 2006, a robust contact task controller is developed for electro hydraulic actuator system that 

operates under significant uncertainties and nonlinearities [56]. There are two distinct controllers 

that are designed individually for position regulation in free space and force regulation during 

sustain contact. These two controllers are then combined via simple switching law and contact 

task controller is formed. With the existence of switching, these systems become non-smooth. 

Then, stability of the controller is analyzed using Lyapunov’s second method under the condition 

of existence and uniqueness of Filippov’s solution. The advantages of this controller are it is easy 

to implement, requires a small computation effort, robust with the variation of hydraulic function 

and environment stiffness, its only requires measurement  contact force and actuator position as 

feedback and have a good performance in transient and steady state period [56].With these 

advantages, this controller becomes attractive for industrial implementations.  

 

Fault-tolerant controllers for an electro hydraulic servo positioning system are introduced by 

Niksefat and Sepehri in 2001 [18]. This controller is required to maintain the system’s stability 

under sensor failure or in the present of faults in servo valve and supply pump. In order to 

maintain the key properties of closed loop system which is stability and disturbance rejection, 
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this robust controller is designed based on quantitative feedback theory. The feasibility of this 

controller is tested by implementing it on real hydraulic system. The results show high degree of 

stability during sensor failure and this controller manage to tolerate with a pump failure when 

pump pressure dropped ~60% below the normal value [18].  

 

V. CONCLUSION 

 

A hydraulic actuator system that consists of a servo motor and an actuator system has been 

widely applied in many fields. This is due to its redundancy such as high power to weight ratio, 

fast and smooth response and good positioning capabilities in many applications. Unfortunately, 

hydraulic actuator systems are well known for its nonlinearities and it also suffers from a large 

extent of model uncertainties such as leakage, friction, external disturbance, etc. With all the 

nonlinearities and uncertainties, stability and performance of the hydraulic actuator system are 

affected. To overcome this problem, a variety of controller algorithms are proposed. Some of the 

controllers that have been developed are fuzzy controller, adaptive robust controller, feedback 

linearize-based controller, robust contact task controller, fault-tolerant controller etc. In order to 

design an advanced controller with the ability to immune the system’s weaknesses, a proper 

development of system modeling is a must. Hydraulic actuator system modeling can be based on 

two methods which are system physical law and system identification method. Most researchers 

choose to use system identification method compared to system physical law as in this method, 

no prior knowledge about the system is required. As there is still some limitation in current 

controller development, a continuous study for hydraulic actuator controller needs to carry on for 

the development of a robust controller for a better performance. 
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