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Figure 3.  UV-Vis spectra of the gold ions source (HAuCl4.3H2O, yellowish color) and the 

synthesized gold nanoparticles (PAA-AuNPs, reddish-purple color) after chemical reduction 

process with their corresponding spherical shape (TEM image). 

 

Once PAA-AuNPs have been synthesized with their characteristic reddish-purple 

coloration, the next step is to incorporate these nanoparticles into thin-films using the Layer-by-

Layer Embedding (LbL-E) deposition technique. The use of PAA as an encapsulating agent of 

the nanoparticles plays a dual role. Firstly, it prevents the agglomeration or aggregation of the 

nanoparticles during the synthesis process. And secondly, this weak polyelectrolyte can be 

manipulated as a function of the pH in order to obtain ionized groups which are used to perform 

the multilayer assembly by the electrostatic attraction of oppositely charged polyelectrolytes. In 

this work, a pH 9.0 has been selected in order to fabricate the nanocoatings because it has been 

demonstrated that both polyelectrolytes at this pH value are totally ionized.  
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In Figure 4, the evolution of the transmitted spectra corresponding to [PAH(9.0)/PAA-

AuNPs(9.0)]n at different number of bilayers is shown. The optical signal of the bare optical fiber 

was taken as reference for the absorption measurements during the fabrication process.  

 

 

Figure 4. Transmitted absorption spectra during the deposition process from 1th to 22th bilayers. 

The curves plotted are 4, 8, 10, 12, 16, 20 and 22 bilayers. 

 

Initially, when the thickness coatings is increased from 1 to 12 bilayers, only an absorption 

band centered at 530 nm is observed. This peak related to the LSPR phenomenon becomes higher 

as far the number of bilayers is increased, although it remains at the same wavelength position. 

Nevertheless, when the number of bilayers is increased up to 16 bilayers, two different resonant 

phenomena, LSPR and LMR1, are observed simultaneously in the visible spectra. The new LMR 

peak (LMR1) appears at low wavelengths and shifts to the right during the fabrication process. 

And finally, when thickness coating is increased up to 22 bilayers, the LMR1 peak exceeds the 

visible range and a new LMR band (LMR 2) is observed in the visible spectrum which is shifted 
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from shorter wavelengths to longer wavelengths as a function of the resultant thickness. This 

LMR2 peak can mask the LSPR peak when they are centered near it as it happens after 20 

bilayers coating. 

In order to characterize separately the response of the different resonances (LSPR, LMR1 

and LMR2) to variations in the surrounding medium refractive index (SMRI), three different 

nanocoatings with different number of bilayers have been fabricated and characterized.  

 

a. LSPR sensor (7-bilayers device) 

The first device consisted of a coating with just 7 bilayers of [PAH(9.0)/PAA-AuNPs(9.0)] 

in which only the LSPR peak can be observed without any perturbations from LMR phenomena 

that could mask the signal. In Figure 5, it is shown the response of the LSPR band generated in 

this device when the sensitive coating is immersed into glycerin solutions with different SMRI. 

 

Figure 5. Spectral response of the LSPR absorption peak (7-bilayers device) and the evolution of 

the maximum absorbance of the LSPR band (inset) when the sensitive coating is immersed in 

different surrounding medium refractive indices (SMRI). 
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The results displayed in this Figure indicate that only a change in intensity of the LSPR 

absorption band is observed as SMRI is varied. As it can be clearly observed, the intensity of the 

LSPR absorption band increases as far as the SMRI becomes higher. In addition, no significant 

changes are observed in the wavelength position of the LSPR peak which it is perfectly centered 

at 530 nm after immersing the sensitive coating to different SMRI. In the inset of the Figure 5, 

the evolution of maxima absorbance of the LSPR absorption band is represented as a function of 

variable refractive index values from 1.33 to 1.4204. 

 

b. LSPR-LMR sensor (16-bilayers device) 

The second device was fabricated by depositing 16 bilayers of [PAH(9.0)/PAA-

AuNPs(9.0)] in order toshow clearly both LSPR and LMR1 absorption bands in the spectral 

range. As it was observed in Figure 4, the LSPR absorption band is centered at 550 nm, whereas 

the LMR1 band is located around 750 nm.  

In Figure 6, it is shown the red-shift of the LMR1 absorption band as SMRI is increased. In 

this same graph, it is possible to appreciate how the LSPR band shows no significant wavelength 

dependence with variable refractive index values because it is located between 540-550 nm and 

this aspect had been previously corroborated in the Figure 5. However, the LMR1 band shows a 

shift of 265 nm when the sensitive region is immersed in water solutions of glycerin with 

refractive index values from 1.3330 to 1.3627. In addition, a higher value of the refractive index 

(n>1.3627) makes the LMR1 band to be already out of the scope for this wavelength visible 

range. The LMR1 absorption band shows a very broad absorption peak with a high sensitivity of 

8922 nm/RIU. This aspect has been experimentally proved in previous works [20] where it can 

be observed for polymeric films that the first LMR (LMR 1) shows a higher spectral width than 

the higher order LMRs. Due to this a study in higher order LMR has been performed in this work 

and it is shown in the following section. 
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Figure 6. Spectral response of the LSPR (wavelength fixed reference) and LMR 1 (wavelength 

variation) absorption bands for 16-bilayers device when the sensitive region is immersed in 

different refractive indices from 1.3330 to 1.3627. The inset of the figure shows the great 

difference in sensitivities of both absorption bands to the external refractive index.  

 

One of the main advantages of the design of this dual LSPR-LMR device is the possibility 

of fabricating self-referenced sensors. As we can see in the inset of the Figure 6, the LSPR band 

can be used as a reference signal (no variation in the wavelength position), whereas the LMR1 

band can be used as a sensing signal to variations of the external refractive index. 

 

c. Multi-LMR sensor (22-bilayers device) 

The third device was fabricated by depositing 22 bilayers of [PAH(9.0)/PAA-AuNPs(9.0)] 

in order to make new LMR bands observable in the spectral range. For this specific number of 

bilayers, LMR1 is already out of the scope for this wavelength range, whereas LMR2 band 

remains in the visible range.  
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In Figure 7, it is possible to appreciate two new LMR absorption bands (LMR3 and LMR4) 

when the sensitive region is immersed in the water solution of glycerin with a refractive index 

value of 1.3627 and 1.4204, respectively. In addition, a red-shift of LMR peaks is observed, 

LMR2 and LMR3 respectively, as SMRI is increased. LMR2 is centered at 570 nm when the 

SMRI is 1.33 and is shifted to 935 nm when the SMRI is 1.4204. In a similar way, the LMR3 is 

shifted from 430 nm when the SMRI is 1.3627 to 540 nm when the SMRI is 1.4204. Attending to 

these results, the LMR2 shows a sensitivity of 4037 nm/RIU, whereas the LMR3 shows a 

sensitivity of 1906 nm/RIU. As we can see in Figure 7, the aspect of the LMR 2 and LMR 3 

absorption bands are narrower than the LMR 1 absorption band (see Fig. 6). 

 

 

Figure 7. Spectral response of the LMR absorption bands (LMR2 y LMR3) for the 22-bilayers 

device when the sensitive region is immersed in different surrounding refractive indices. 

 

In order to have a more precise idea of the different behavior in sensitivity related to the 22-

bilayers device, Figure 8 shows the wavelength shift versus refractive index values of both 
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LMR2 and LMR3 bands. According to these results, the LMR2 shows more than two-fold 

increase in sensitivity than LMR3. The presence of this dual peak in a same device (22 bilayers) 

presents the additional advantage of more accurate measurements of the refractive index, 

showing a wavelength-based detection. Due to this, it is possible to estimate the SMRI as a 

function of the wavelength displacement of the both LMRs, and not only with the intensity shift 

of the LSPR. In Table 1, the main differences between the three fabricated devices are presented 

with their corresponding sensitivities. 

 

Figure 8. Experimental wavelength shift evolution of both LMR2 and LMR3 absorption bands to 

different surrounding refractive indices of the 22-bilayers device. 
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Table 1. A comparative table of the sensitivities (wavelength shift in nanometers versus refractive 

index unit) for the three devices analyzed. 

Optical fiber device Optical phenomenon 
Sensitivity (nm/refractive index 

unit) 

   

7-bilayers device LSPR Negligible 

16-bilayers device LSPR Negligible 

 

LMR1 8922 nm/RIU 

22-bilayers device 

  

LMR2 4037 nm/RIU 

LMR3 1906 nm/RIU 

 

 

Finally, and according to the experimental results, one of the most important advantages of 

using the LbL-E deposition technique is that the optical response of the sensors can be monitored 

during the fabrication process and it can be stopped at the moment when the LSPR, LSPR-LMR 

or multi-LMR bands are tuned to the desired wavelength position with their characteristic 

sensitivities. 

 

IV. CONCLUSIONS 

 

In this work, three optical fiber devices based on different optical phenomena, LSPR, 

LSPR-LMR and multi-LMR absorption bands, have been fabricated and characterized for 

measuring the refractive index. The LbL-E deposition technique has been selected to fabricate the 

nanocoatings based on the successive incorporation of gold nanoparticles onto the uncladded core 

of a multimode optical fiber fragment. The transmitted spectra monitored during the deposition 

allow the study of the apparition and evolution of different absorption peaks as a function of the 

thickness coating. 
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The first device consists of a 7-bilayers coating and only the LSPR peak is observed which 

is centered at 530 nm, inherent to the gold nanoparticles. This peak remains at the same 

wavelength position during the whole fabrication process, showing only intensity variation 

without any wavelength dependence to the SMRI. The second device consists of 16-bilayers 

coating and two optical phenomena (LSPR and LMR1) at different wavelength positions are 

observed in the spectral range, showing a different behavior to the SMRI. The LSPR shows no 

significant wavelength dependence whereas LMR1 shows a strong wavelength response with a 

sensitivity of 8922 nm/RIU. And the third device consists of a 22-bilayers coating and multiple 

LMR peaks (LMR2, LMR3, LMR4) are observed when the sensitive coating is immersed in 

glycerin solutions with a variable refractive index value. The LMR2 and LMR3 peaks showed a 

sensitivity of 4037 and 1906 nm/RIU respectively. These results indicate that LMR2 improves 

the sensitivity in more than two times than LMR3. Finally, the presence of the LSPR peak in a 

same optical device can be used as a wavelength fixed reference, while LMR peaks can be used 

to measure the refractive index. To our knowledge, this is the first time that LSPR generated by 

gold nanoparticles and LMR peaks are simultaneously observed in a same device. 
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