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Abstract- In this paper, we proposed to use the Efficient Indoor Thermal Time Constant (EITTC) to 

characterize the indoor thermal response in old buildings. Accordingly, a low cost, energy-efficient, 

wide-applicable indoor thermal modeling solution is developed by combining Wireless Sensor Network 

(WSN) and Artificial Neural Network (ANN). Experiments on both prototype and building room 

showed consistent results that the combination of WSN and ANN can provide accurate indoor thermal 

models. A linear approximation of these models makes it possible to estimate the EITTC of building 

room. Statistical computations confirmed these estimations by showing a strong correlation between the 

model's predicted EITTC and measured data. Thus the indoor thermal response under different 

indoor/outdoor conditions can be characterized. Finally, a model based adaptive heating Start/Shut 

control method is proposed and tested, with which, direct energy saving is achieved. 

 

Index terms:  Wireless Sensors Network, Back-propagation Neural Network, Thermal Modeling, Linear 

Approximations, Effective Indoor Thermal Time Constant 
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I. INTRODUCTION 

 

Energy consumption of residential and commercial facilities takes about 40% in Europe and 

USA. In China, residential urban energy consumption tripled between 1996 and 2008 [1]. As a 

matter of fact, the energy consumption varies between different types of buildings. For example, 

low energy efficient buildings (especially old buildings more than 30 years) consume from 300 to 

400kWh=m2=year, while modern buildings consume approximately from 150 to 

200kWh=m2=year [2]. The improvement of energy efficiency in low energy efficient buildings 

can bring considerable environmental and financial benefits.   

A common fact of these low energy efficient buildings is this: most of them are badly isolated, 

thus, the building’s dynamic thermal behavior in response to environment factors is very complex 

due to many existing nonlinear and time-varying heat transfer effects. Thus, it is difficult to 

characterize the indoor heating/cooling effects under different environmental conditions. The 

lack of understanding on the thermal effects inevitably leads to a squandered usage of energy. 

The traditional way to optimize the building’s energy efficiency is to renovate the building with 

new construction material, which is often expensive and time-consuming. The purpose of this 

paper is to demonstrate that by establishing an accurate adaptive thermal model, the indoor 

thermal response can be characterized. Thus, the existing heating/cooling system’s efficiency can 

be optimized.  

Sensors and sensor networks are more and more used in building related research [3][4][5]. WSN 

has been recently used in monitoring Data-Centers and Nuclear Facility [6][7]. Wired sensor 

network has been applied for maintaining the occupent’s comfort within a large multi-use 

building [8].  Halgamuge et al. further proposed method in optimizing the energy consumption of 

the WSN used in building monitoring[9] while Artificial Neural Network (ANN) has shown 

growing interests  in thermal modeling of buildings [10][11].   

Indeed, among most previous works on indoor thermal modeling, a limited number of sensors 

have been applied, mainly due to the fact that the data acquisition by wired sensors is usually 

expensive and time-consuming. These researches focused on macroscopic modeling of buildings, 

they consider large rooms as big thermal capacitors with homogeneous temperature. ANN used 

for thermal mapping of a cold storage is presented in [12], however, this model does not involve 

outdoor conditions, and it cannot provide in-time predictions of indoor temperatures.  



The authors of this paper proposed methods of combining WSN and ANN in indoor thermal 

modeling [13]. We think there are two main advantages of applying WSN and ANN in building 

room thermal modeling. First, the nature of WSN and ANN makes them a perfect combination: 

on one hand, WSN could be easily and rapidly implemented, providing a huge quantity of sensor 

data. These data sources in return could be essential for the ANN to identify a fine grained 

thermal model. Secondly, they have high practical values: mathematical thermal modeling 

approaches [14] are usually used in general simulations. They are hard to be applied in some 

practical applications. It is mainly because these models are based on elements such as room 

thermal capacitances/resistance, airflow rate, heat transfer coefficient, heat gain coefficient, etc. 

These parameters are difficult to be measured precisely in old buildings. Also, as we mentioned 

above, the dynamic behavior of building room is very complex, it is nearly impossible to obtain 

an accurate mathematical model with limited number of parameters. The WSN, on the contrary, 

is highly transplantable as it could be quickly equipped in any buildings to gather real-time 

thermal data. Additionally, with ANN self-adaptive learning and mapping ability,  it can capture 

the room’s thermal response under different indoor/outdoor conditions. Based on the two reasons 

above, we believe that the combination of WSN and ANN can be an effective solution for indoor 

thermal modeling. 

Previous studies outlined that ANN model outperformed Auto-Regressive(ARX) models in 

predicting the indoor temperature because the ANN models are more sensible to the 

nonlinearities of the thermal effects in buildings [10][11]. Furthermore, J.W.Moon has pointed 

out in his work [15] that ANN’s adaptability makes it a more advantageous method in thermal 

control comparing to Fuzzy method. The thermal time constant (TTC) can be used to quantify the 

thermal inertia of a room, in simpler words, it describes how quickly the temperature changes 

under different thermal excitations. In previous works, the building TTC are calculated mostly 

with the thermal resistance and thermal capacitance of the building fabrics [16][17], these 

thermal constants is usually used to simulate the thermal response of buildings under 

environmental excitations, it is very difficult to use them directly to characterize the indoor 

temperature changes in response to existing indoor heating/cooling system. Some of the time 

constants are calculated based on simplifications that all heat transport phenomena in building are 

linear [17] which is limited facing the complex dynamic behavior of buildings. Thus, we 

proposed in this paper a new concept: the Effective Indoor Thermal Time Constant (EITTC). By 



taking into consideration of both indoor heating/cooling system’s performance and the building 

room’s thermal property, the EITTC can be used directly to describe the indoor thermal response 

under existing indoor heating/cooling excitation and different outdoor conditions. 

 

The proposed indoor thermal modeling solution is presented in Fig. 1. Accordingly, this work is 

carried out in four steps: firstly, we presented the concept of EITTC by establishing a 

mathematical model of a typical low energy efficient room. Secondly, a WSN based real-time 

thermal data acquisition system and an ANN integrated Graphic User Interface (GUI) software 

are built,  followed by experiments on a confined prototype and a typical office building of 40 

years old. The modeling performance on prototype and building rooms are consistent since the 

trained models’ prediction errors regarding both training and test data are very low. Thirdly, by 

making linear approximations of these models, the variations of the model predicted EITTC have 

been discussed. Finally, based on the trained ANN thermal models, an indoor adaptive control 

system is developed. 

 

Figure 1 The principle schema  

 

 

II. EFFECTIVE INDOOR THERMAL TIME CONSTANT  

 



We take previous work [17] as a reference, the indoor thermal time constant proposed by J. 

Florez and G.C.Barney is:  
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Where τr is the room thermal time constant, Cr is the thermal flow store of the room, R0 is the 

linear thermal dissipater from the room to exteriors, and the linear thermal dissipater from room 

to the fabric is Rf. This equation is derived from a simplified linear mathematical model of a room;   

it is much a general expression of room thermal time constant.    

We proposed in this paper the Effective Indoor Thermal Time Constant (EITTC) which is 

presented mathematically below:  

We establish here a model of a typical building room (The room E106 in the Campus of 

Université de Toulon) as shown in Fig. 2. 

 

Figure 2.   Model of a typical building room 

 

If we define Ao, Ap, Ar, Aw as respectively the area of the wall towards exterior, the partition wall, 

the roof and the windows, accordingly, r1 to r4 are their thermal resistance. They can be 

calculated from the equation below:  

1

n
i

in ex

i i

d
r r r

k

               (2) 



In which, n is number of layers of the wall (see Fig. 2), di is the thickness of each layer and ki is 

the thermal conductivity of each layer, rin is the thermal resistance of air close to the interior 

surface while rex is the air thermal resistance close to the exterior surface. 

We then have the absolute thermal resistance of different parts of the building room: 
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Thus, the thermal conduction on each part of the room is: 

1 2 3 4

o n or
d o

t t tt
Q Q Q

R R R R

  
                   (4) 

where ti, tn, tr, to are respectively the indoor temperature, the next door’s temperature, the 

temperature of upper room and outdoor temperature; According to the  energy-conservation law, 

this room model can be put as:  
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 where mi is the thermal mass of indoor air and cr is the indoor specific heat capacity; ts is the 

output heated air temperature from the indoor heating system, ρs is the density of heated output 

air, Vs is the volume of heated output air and the temperature of heated air is defined as ts; cs is 

the specific heat capacity of heated output air; Qi is the sum of heat (kW) emitted by the indoor 

activities and Qo is the heat lose through the opened windows or doors. 

The incremental equation derived from Eq. 5 can be expressed as following: 
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In Eq. 6, we have: 
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Where τ  is the Effective Indoor Thermal Time Constant, G1 is the amplification factor of the 

indoor temperature caused by heated air; G2 is the amplification factor of indoor thermal 

perturbation;  ΔQ is the total change of the indoor heat caused by all disturbances. 

The EITTC, as shown in Eq. 8, describes how quickly the indoor temperature changes under 

different indoor heating stimulation and outdoor conditions. It indicates that EITTC is mainly 

related to three factors: the indoor heat capacity, the indoor heating/cooling system’s efficiency 

and the thermal conductivity. As we mentioned in the introduction, nonlinear and time-varying 

thermal effects have long been recognized in buildings. The parametrical modeling method need 

precisely measured parameters which are hard to obtain in these old buildings. Furthermore, it is 

not very practical for habitants to use this method to characterizing the thermal response in their 

rooms. In this paper, we propose to estimate the room’s EITTC by establishing an adaptive ANN 

indoor thermal model based on WSN acquisitions. The realization of the proposed method is 

presented in the following parts of this paper. 

 

 

 

 

 

  

III. WSN BASED HARDWARE AND  ANN SOFTWARE DESIGN  

 

To make this work more applicable, we developed a set of industrial level hardware and software 

solutions including a WSN based thermal acquisition system, an ANN integrated Graphic User 

Interface (GUI) software and an infrared heating source (air-conditioner) remote control circuits. 



The WSN system is cored with Texas Instrument (TI) CC2530 microcontroller and embedded 

with ZigBee 2007 specification (ZigBee defines a reliable, cost effective, low rate, low-power 

wireless networking. It has many advantages in forming a network with long operating time and a 

huge quantity of sensor accesses. As we need long term acquisitions with sensors covering the 

whole building rooms, it is therefore considered as an appropriate choice for us). The WSN 

system mainly contains three types of devices: Coordinator, Router, and End-device.  Digital 

temperature sensor, solar radiation infrared sensor are integrated on the End-device. 

 

Figure 3.  End-device and Coordinator of the WSN system 

 

Accordingly, we developed the ANN integrated GUI software under Visual Studio (see Fig. 4). 

The main functions of this software are 1. Data storage: where measured sensor data can be 

stored in the database. 2. Signal processing: different digital filters have been integrated in this 

software to process the coming-in sensor data. 3. ANN integrated thermal modeling. 4. 

3cm 

5cm 6cm 

4.4cm 



Simulation, Model-prediction and control. 5. Real-time observation of sensor acquisition and 2D 

simulation. 

 

Figure 4.  ANN integrated thermal modeling software 

 

The thermal model established in this work is a typical Multi-Inputs Multi-Outputs (MIMO) 

system: we consider the indoor heating or cooling source as a main control input, the measured 

outdoor temperature and solar radiations as perturbation inputs. The temperatures on each point 

of the building room are henceforth defined as the outputs. To fit this MIMO system, a three-

layered Back-Propagation Neural Network (BPNN) is chosen as the ANN model structure. The 

BPNN proposed by Rumelhart et al [18] is one of the most commonly used neural networks for 

its simplicity and efficiency. Hecht-Nielsen demonstrated that a three-layered BPNN is capable 

of approximating any continuous mapping [19]. Previous research has also confirmed its 

performance in engineering applications [20]. Correspondent to the MIMO system, the BPNN 

contains three layers: an input layer, a hidden layer and an output layer. This determines a first 

order BPNN structure. In order to increase the model’s accuracy, we also proposed higher order 

models: if we define the standard interval time between every acquisition as Ti, we can form a 

second order model by involving the previous output temperature t-Ti in the input layer (see Fig. 

5), or even a third order model by including both t-Ti and t-2Ti in the input layer, etc. 



 

Figure 5.   Second order ANN thermal model structure 

 

The inputs of the model affect the outputs with different weights. During the training phase, the 

neurons will regularly correct their weights by calculating the error between current ANN 

model’s output and the expected output. After sufficient learning iterations, the error can be 

considered negligible. At this point, we consider the model is ready and well taught. In this work, 

we build our network model with a default training iterations of 500000 times and the default 

error threshold is set to 0.00003. These can be found in the configuration of training parameters 

in Fig. 6. 

 

Figure 6.   Configuration of ANN Training parameters  

This algorithm of training is presented below. As the mathematical representation of the complete 

model is very complicated, we take a simplified one neuron model (see Fig. 7) as an example to 

explain the model’s training algorithm. If we consider that the two main inputs are Indoor 

heating/cooling control sources Cs, the ambient temperature Ta, the only output is the indoor 



temperature Tout. Then, the activation function of the neuron is f (x) and it is responsible for 

normalizing the incoming values from the previous layer. 

 

Figure 7.    Example of a single neuron   

A sigmoid function (11) is chosen as activation function f (x) in the software. A three-layered 

BPNN using sigmoid activation function is a universal approximator [21].  
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then, we have the output of the single neuron equals to: 

1 2( ) ( )out s aT f c w t w f u            (13) 

After the inputs have reached the output layer through all the neurons in the network, these 

outputs will be compared with the measured output values. The difference is defined as the error 

signal e of the output layer neurons in Fig. 7. The error signal propagates backwards to the input 

layers. After the error signal e of every neuron in the model is computed, the weight of each 

neuron adjusts itself through an optimization gradient descent method, where ƞ is the learning 

rate. In this way, the error decreases:  
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So far, there is no determined rule to define the best network training parameters, the reasonable 

method is still trial and error. Thus, we give two possibilities in this software: 1. Manual 

Definition, the parameters can be defined by users; their default values are presented on the 



software in Fig. 6.   2. Auto Evaluation, the parameters can be selected by a cyclic trial algorithm: 

different sets of training parameters are used to train network models. The software will select the 

parameter combination which leads to the minimum prediction errors regarding the training sets.  

The training method can also be found in author’s published work on WSN based ANN modeling 

[13]. 

As for the number of neurons in the hidden layers, we estimated it with equation below: 

1
. ( )

2
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Where Ni is the total number of network inputs, No is the number of outputs, Ntp is the number of 

training data patterns. This formula has been used in several engineering problems for modeling 

and prediction with good results [22]. 

 

One contribution we introduced in this work is “Step-Time” which defines a time interval to 

sequence the sensor data to form the training data matrix (see Fig. 8). Since the frequency of 

WSN acquisition is high, a single session of acquisitions contains a huge amount of sensor raw 

data in the software database. In order to train ANN model more efficiently, instead of taking all 

the sensor data from database, the training data matrix for the ANN model is selected 

sequentially from the raw sensor data according to the Step-Time. 

 

Figure 8.    The Step-Time and training data set 

 

 

 

 

 

 

 



IV. EXPERIMENTS: PHOTOTYPE AND ROOM    

 

Experiments were divided into two phases: First, to evaluate ANN the modeling performance 

with WSN, experiments have been done on a prototype. After its performance on prototype was 

verified, we carried out experiments in real building rooms. The prototype is a cubical corrugated 

box. To simulate a room inside a building, we have covered our prototype with same boxes above 

and four around, leaving only one side towards thermal source. The prototype is placed in a room 

where the indoor temperature is considered stationary and no circulating air flow presented 

during experiments. It simulates several separated thermal resistance zones just like a building. 

Admittedly, the thermal characteristic of cubical corrugated box differs from the construction 

materials. Although the heat transfer coefficient (also known as the U-value
1
) of the cubical 

corrugated box (board thickness 4.23mm) is 2.21W=Km2 while the U-value of the building wall 

(Aggregate Concrete, wall thickness 0.3m), according to our calculation, is about 5.83W=Km2.  

they share the same heat transfer principle. The experiment is described below: Three sensors (in 

blue in Fig. 9) are located outside the prototype as disturbances (input), measuring ambient 

temperatures. One sensor (in red in Fig. 9) measuring the thermal source is considered as control 

input. Six thermal sensors (in pink in Fig. 9) are put horizontally inside the prototype to collect 

inner temperatures, giving the output value of the system (see Fig. 9). 

 

Figure 9.   Over all view of the prototype  

                                                           
1
 The U value is an energy efficiency indicator. It refers to the thermal transmittance.   



Later, experiments have then been carried out in real building rooms E106 (Width 5.5m,  length 

7.2m, Height 3.15m) located in the building E of IUT in the campus of University of the South, 

Toulon Var (LAT 43◦ 123  N, LONG 6◦ 11  E), city of La Garde, south France. The 

building was built in the year of 1968 and has not yet been renovated. It matches the definition of 

low energy efficient buildings: no modern HAVC system inside and it is badly isolated. One 

infrared sensor is installed outside the building room to measure solar radiations. One thermal 

sensor is placed outside the building while the others are placed in the corridor. 

These two sensors collect the ambient temperatures outside the room. The indoor heating/cooling 

source is considered as the main input. Six thermal sensors are placed horizontally at the height 

of 1.10m
2
. The experiments are mainly carried out in this room (See Fig. 10). The ANN models 

are automatically trained by sensor data and stored in the database. 

 

Figure 10.  Room E106  in Université de Toulon, Var, France 

                                                           
2
 According to air-conditioning industry standard, the room temperature is evaluated at the height of 1.10m  where 

the most human activities take place. 



V. INDOOR THERMAL MODEL BASED ADAPTIVE CONTROL 

 

As the most energy consuming period for building room E106 located at this latitude is the early 

spring, the indoor heating system is operated manually for all day long,  which generate great 

energy wastes.  

Thus, we designed in this work a new indoor heating control strategy called “Adaptive Start/Shut 

Control” which is based on the ANN thermal model’s prediction. The necessity of adaptive 

Start/Shut control can be understood with Fig. 11. The accurate Start/Shut control of indoor 

heating equipment can lead to the both indoor comfort and a minimum energy consumptions.   

By deploying the WSN based ANN thermal model, precise predictions and control of indoor 

temperature can be achieved: Firstly, the computer records the actual initial outdoor/indoor 

conditions from real measured WSN sensor acquisitions. Secondly, the software uses the 

correspondent trained ANN thermal model to make the calculation of the preheat time (tp) needed. 

Thirdly, calculation will be made to find the optimum start time of indoor heating equipment 

based on the occupancy start time and the model prediction (tin − tp). Finally, the software 

generates control command and sends it to activate the heating system. The same process can be 

applied for an earlier shut-off of the heating system (see Fig. 12). This control operation can be 

used to shorten the heating period and bring direct energy saving.    

This control method has been proved effective by experiments carried out  during the spring 2013 

and 2014 in the room E106. Normally, the heating system in this room is activated from 8:00 am 

to 6:00 pm while the occupancy period is from 8:45 am (tin) to 5:45 pm (tout). By deploying the 

proposed control method, the adaptive start and shut off of heating system in controlled precisely 

based on model’s predictions. Thus, the operating period of the heating system is shortened. The 

results are presented in the next section of this paper. 



 

Figure 11.   Optimum indoor heating operation  

 

 

 

Figure 12.   Indoor thermal model based predictive control    

 

 

 



 

VI. MODELING AND CONTROL:  RESULTS AND DISCUSSION 

 

In order to evaluate the modeling results, an Average Mean Squared Error (AMSE) of the ANN 

model are presented in Tab. 2. This value is calculated as below (see Eq. (7)-(8)). If we consider 

the model predictions output is T and the measured temperature is T, the number of measures is 

n; we have the Mean Squared Error (MSE) for one model output (one sensor) is:  
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The AMSE is the average MSE value of all the k outputs (k sensors): 
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The modeling results on prototype are presented in Fig. 12. We compare the model response 

regarding its test data in Fig. 12. The originally measured outputs (multiple sensors) are colored, 

the model responses are in black. The results of real indoor thermal modeling results is presented 

in Fig. 13, the model predictions are in black while measured data are lightly colored.   

 



Figure 13.  Prototype: ANN model response (black) regarding measured test data (colored)  

 

 

Figure 14.  Indoor: ANN model response (black) regarding measured test data (colored)   

 

In order to verify all models’ performance, we calculated the AMSE of all the 93 models created 

individually from 93 different sessions of daily acquisitions, the average prediction errors 

regarding its own training session is around 0.20 ℃ while regarding the test data is about 0.27 ℃. 

 

 

 

The modeling results have positively indicated the fact: based on the WSN thermal sensor data, 

ANN’s self-adaptive learning and mapping ability makes it possible of providing accurate 

framework for indoor thermal modeling of a building room. The raw thermal data and model 

predictions match the previous research on zonal model of buildings [23-27]. It shows that the 

temperature distribution inside the building room is not homogeneous. Different parts of room 



react differently to the heating source, which is mainly due to the thermal dynamics and air flow 

mechanics. This result indicates that the WSN and ANN are capable of capturing the thermal 

characteristics on each part of the room. 

In order to characterize the general thermal response in the room, linear model derived from the 

previously established ANN thermal model is considered valuable. By simulating the step 

response of the trained ANN thermal models, the first order approximation on each part of the 

room can be realized. Based on these simulations, the average EITTC can then be evaluated. 

Two examples of the ANN thermal model’s step responses are presented in Fig. 15. We find that 

the models’ predictions on EITTC vary under different indoor/outdoor conditions. To verify 

these ANN model’s predictions on indoor thermal time constant, we compared the ANN models’ 

predicted time constants with real measured indoor temperature’s characteristic time. This 

comparison shows the consistency between model’s prediction and the real indoor thermal 

response. The results are presented below in Tab. 4. Statistic computation has been made. The 

correlation rate between the model predicted EITTC and the measured room thermal 

characteristic time is about 0.9526 (with a p-value p <0.041).   

 

a. Step response of ANN model created Feb. 23, 2012 



 

b. Step response of ANN model created April. 06, 2012 

 

Figure 15. Model predicted EITTC on different dates 

 



 

In Tab. 3, Measured CT refers to the measured room Characteristic Time. We noticed that the 

predicted time constants are a little bit shorter (average error is 0:85min with a standard deviation 

of 0.1978) than the measured room characteristic time. The main reason is that the model 

estimated EITTC are simulated from the step response of the ANN model. In reality, indoor 

temperature changes resulting from heating system always presents certain delay. 

  

The models’ predictions show that the EITTC of this building room varies from 8.5 minutes to 

13.4 minutes. This result can be discussed from different perspectives. Firstly, we noticed that 

time constant changes in response of different environmental factors, for example, the outdoor 

temperature. This fact well demonstrated the fact that nonlinear heat transfer phenomena presents 

in buildings. As we can see from Eq. 8 that except for the non-linear thermal conductivity, that 

the EITTC is also related to the indoor heating/cooling system’s output. Most heating/cooling 

source like inverter air-conditioning system has nonlinear output; this can be considered as the 

second cause of the variable EITTC. 

 

For building habitants, it is difficult to obtain the exact mechanism of their indoor air-

conditioning system to make a quantitative analysis. This in return points out again the advantage 



of our WSN and ANN combined solution: benefiting from the universal approximating ability of 

ANN models, habitants can characterize their indoor thermal effects without further computation 

or parameter estimation on their existing heating/cooling system. Based on the discussions above, 

the ANN thermal model is able to describe building room’s thermal response adaptively. 

Furthermore, it could characterize the existing control source’s heating effects in the building 

room under different indoor/outdoor conditions. WSN is practical to be implemented in the 

whole building permanently to trace the thermal characteristics under different conditions and to 

give in-time predictions. For example, predictions could be made based on the weather reports. 

Thus, dynamic control could be realized according to these predictions. 

As introduced in the previous section of this paper, we proposed model based adaptive heating 

start/shut control in the room E106 to shorten the operating period of the indoor heating system. 

By deploying the adaptive Start/Shut control system in room E106, further energy efficiency has 

been achieved. The heating start/shut tests (spring 2013 and 2014) are presented in Fig. 16. 

Comparing to the old Start/Shut operation of heating system (08:00 am to 6:00 pm), the new 

control method has shortened 9.3% of the regular heating period which leads to direct energy 

saving. 

 

 

a. Model based heating start control test spring 2013 



 

b. Model based heating shut control test spring 2013 

 

 

c. Model based heating start control test spring 2014 



 

 

d. Model based heating shut control test spring 2014 

 

Figure 16. Adaptive heating start/shut control results  

 

VII. CONCLUSION 

 

 This paper has highlighted a new indoor thermal modeling solution to characterize the thermal 

response in low energy efficient buildings. We proposed a new concept EITTC (Indoor Efficient 

Thermal Time Constant). It shows that the combination of WSN (real-time acquisition) and ANN 

(system identification tool) leads to adaptive fine grained indoor thermal model. Experiments on 

both prototype and faculty building room positively exhibited consistent results. By tracing the 

characteristics time constant of the linear approximation of the ANN thermal model, we can 

characterize the existing control source’s heating/cooling effects under different outdoor 

conditions. These results have been confirmed by statistical computations since a strong 

correlation have been found between the model predicted room time constant and real measured 

characteristic time of the building room. Adaptive heating control methods have been proposed 

and showed direct effects in building energy savings. Further research and explorations will be 

made: taking advantage of the high energy efficiency of our WSN system, long term 

measurements for the purpose of enriching the thermal models will be necessary.  
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