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Abstract- To improve the accuracy of binocular 3D image reconstruction, the grid-pattern structure 

lines are printed on the detected objects and the grid lines intersection points are adopted as feature 

points and primitives in matching process. In this paper, a novel method for detecting the intersection 

points of the grid lines based on image segmentation and ridge line fitting is proposed. Firstly, the set of 

line segments on the border of the grid lines are extracted using the Canny edge detector and Hough 

transformation. Then, the global structure parameters are acquired through cluster analysis. Secondly, 

the grayscale image is divided into several detection regions (each of which includes one intersection 

point to be detected) in accordance to the obtained global structure parameters and the intersection 

points in the detection regions are accurately located using the ridge line fitting method. Finally, the 

intersection points in the left and right images are matched based on their distributions. To examine the 

detection performance of the proposed method, experiments have been conducted on actual and 

polluted images, respectively. The experimental results have demonstrated that the recognition ratio of 

the intersection points by the proposed ridge line fitting-based method is as high as 100%, the false 

positive ratio is 0 and the matching accuracy is up to 100%. Compared with the results obtained using 

traditional methods, the proposed method detection results are characterized by high accuracy, stability, 

uniqueness and invariability. Hence, the proposed method can meet the demands of 3D image 

reconstruction. 

 

Index terms: Grid image, intersection point detection, image segmentation, ridge line fitting, global feature, 

cluster analysis. 
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I. INTRODUCTION 

 

Although the time domain pulse signals have been widely studied for a long time but the spatial 

domain pulse signals are attracting more attentions in recent years. Since the spatial-domain pulse 

signals carry a great deal of unique physiological information such as blood pressure and vascular 

elasticity [1], their detailed studies can open up new ways of monitoring cardiovascular health 

and can reveal the pulse-diagnosis mechanisms in traditional Chinese medicine. The three-

dimensional (3D) pulse signals can be extracted from the shape changes of the skin surface over 

the radial artery (on the wrist) [2-3]. In the present work, inspired by the pulse-taking diagnosis in 

traditional Chinese medicine, an air-bag humanoid finger flexible probe has been designed and 

pressed against the radial artery on the wrist [4]. The contact film on the probe has been 

synchronously captured using two micro-lens cameras. Then feature point detection and 

matching have been performed on the images taken from different angles and finally the 3D 

profiles of the contact film have been acquired.  

The accurate detection and matching of the image feature points is a key link in the acquisition of 

3D pulse signals since it directly affects the signal quality. The grid-pattern structure lines 

(hereinafter referred to as the grid lines) are printed on the contact film and the intersection points 

of the grid lines are adopted as the feature points to be detected to improve the measurement 

accuracy. The grid intersection point is exactly not a point but the center of the intersection 

region of grid lines, i.e., it can be regarded as a generalized feature point. Generally, there are 

three types of feature point detection methods. First type is the gray-value-based feature point 

detection methods such as Harris and SUSAN [5-6], the second type is the scale-space-based 

feature point extraction methods such as SIFT and SURF [7-9], and the third is morphological 

approach [10-11]. Specifically, the feature points in Harris can be picked out based on the gray 

values of the pixels; while SUSAN determines whether the feature points exist or not in 

accordance with the distribution pattern of dark pixels and light pixels in the sliding mask film. 

Harris and SUSAN detectors are capable of effectively detecting the corners, the isolated points 

and the intersection points, but both are unable to detect the generalized feature points with no 

visible differences in gray features. In SIFT, multiple convolutions of the images are conducted 

with a Gaussian kernel to generate the scale space of an image and then the extrema in the multi-

scale space are adopted as the feature points. SURF uses various box filters instead of the 
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Gaussian kernel in the convolution operation to enhance the calculation efficiency. Using these 

two methods, not only the coordinates of the feature points can be obtained, but also the 

orientation descriptor of each feature point can be calculated. Accordingly, the feature point 

matching accuracy of SIFT and SURF detectors is high, but the detected feature points in the grid 

image are scattered, some of which are even located outside the grid lines. In morphological 

approach, the grid lines become disconnected after conducting the erosion operations on the 

binary images, then the isolated regions are formed, and finally the region centroids are detected 

as the feature points. Some detected feature points in morphological approach are located in the 

intersection region of the grid lines; however, the accuracy still needs to be improved. 

In the presented work, the grid image is divided into a definite number of detection regions based 

on the extracted global structure features. Each of these regions includes an intersection point. 

Then the intersection points in all detection regions are accurately located using the ridge line 

fitting-based method. The proposed method has proved to be effective in detecting the 

intersection points on the grid images captured by the macro lens with a low brightness and a 

narrow gray level range. Finally, the intersection points in the left and right images are rapidly 

matched by taking advantage of their distribution characteristics. 

 

II. IMAGE ACQUISITION 

 

In the present study, the images of the film in touch with the probe are taken by black and white 

industrial cameras (acA1300-30gm, Basler, Germany), equipped with the prime lenses (M0814-

MP, COMPUTAR, Japan). In the constructed 3D pulse signal detection system, the focal length 

of the lens is 8 mm; the baseline distance between two cameras is 65 mm, with an optical axis 

angle of 26°; the object distance is 54 mm and the pixel size of the collected images is 440×440 

pixel. Figure 1 shows a typical image pair captured by the two cameras and provides some 

relative terms regarding the structural parameters of the grids. It can be observed that the 

detection region is a square area including only one horizontal and one vertical line forming a 

‘+’-shaped grid. In the detection region, the overlapping region of the two grid lines is referred to 

as their intersection region. As shown in Figure 1, id  denotes the width of the grid line; i  

denotes the distance between the grid lines; i  denotes the angle between the grid line and the y-
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axis of the image coordinate system and is  denotes the distance between two neighboring grid 

lines along the same direction. 

 

(a) Left grid image   (b) Right grid image   (c) Detection region 

Figure 1.  Left and right grid images obtained from both cameras, showing the horizontal and 

vertical grid lines and intersection point position and detection area  

 

III. GRID INTERSECTION POINT DETECTION MATCHING METHODS  

Figure 2 illustrates the flow chart of the detection and matching method for the intersection 

points. To be specific, in the first step, filtering and binarization processes are first applied on the 

image, and then the edges of the grid lines and the line segments on the edges are detected using 

the distribution rules of the line segments. The cluster analysis is conducted on the set of 

unidirectional line segments in order to obtain the grid structure parameters and determine the 

size of the detection region. In the second step, the grids are refined into skeleton lines, and then 

the intersection points of these skeleton lines are detected and adopted as the centers of the 

detection regions. In the third step, the original grayscale image is divided into several square 

detection regions. The centers of these detection regions are the intersection points of the skeleton 

lines. In the fourth step, the intersection point of the grid lines in each detection region is detected 

using the ridge line fitting method. Finally, the points in the left and right images are matched 

based on their distribution characteristics in step five. 
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Figure 2. Flow chart of intersection points detection and matching method 

a. Acquisition of the grid structure parameters  

The size of the detection region is determined by using the grid structure parameters. These 

parameters are, the average width of the grid lines d , the average distance between the two 

unidirectional adjacent grid lines s , and the average angle between the grid lines and the y-axis 

of the image coordinate system  . The average angle   reflects the direction of the 

unidirectional grid lines and it can be obtained by detecting the line segments on the edge of grid 

lines; d  and s  can be obtained by conducting the cluster analysis on the unidirectional line 

segments. 

Average filtering and binarization processes are applied on the grayscale images before the edge 

extraction and line detection. By virtue of its advantages such as strong anti-noise ability and 

favorable processing performance regarding images with non-uniform illumination, the local-

adaptive threshold method [4] is adopted for binarization processing in this article, and the results 

are presented in Figure 3 (a) and (b). The fine lines in figure 3 (c) and (d) are the detected edges 

of the grid lines extracted from the binary image via Canny edge detector, while the thick lines 

represent the set of line segments detected from the edges of grid lines through Hough transfer. 

The set of unidirectional line segments consists of two nearest straight lines that are located on 

two edges of the same grid line having the narrowest width of the grid line mind  as the distance 
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between them. Since the grid lines vary in width, { }id  can be used to denote the set of the grid 

line widths, in which the elements have the similar values.  

  

(a) Binary image(left)      (b) Binary image(right) 

 

 (c) Straight lines and edges (left)   (d) Straight lines and edges (right) 

Figure 3. Binarization, edge extraction and line detection results 

Taking the set of longitudinal line segments in the right image as an example, these longitudinal 

line segments are denoted as { ( ) }, 1, 2, ...,, , ,i i i i i Nu w   , where iu  and iw  denote the starting and 

ending points of the line segment, respectively. Then taking out the i  components of all 

elements in the set of longitudinal line segments, and constructing the following distance matrix:  
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1 1

0 | | ... | |
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| | | | ... 0
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N N

   

   

   
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 

 

 
 
 
 
  

     (1) 

The non-zero elements in the distance matrix are then arranged in ascending order, and the 

obtained sequence is denoted as 
2

{ }, 1, 2, ..., -
i

t i N N . Figure 4 is the scatter diagram of this 

sequence and is showing that the sequence includes several sections. Through an in-depth 

analysis, it can be concluded that the first section represents the set of the grid line widths { }d
i

 

and the second section represents the set of distances between the neighboring grid lines { }is . 

Both { }id  and { }is  are obtained by classifying the { }it  using agglomerative hierarchical clustering 
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[11], d  and s  are further calculated. At the same time, the average value   of the angles 

between the vertical grid lines and y-axis is calculated by taking out the   components of all the 

elements in { ( ) }, , ,i i i iu w  . The horizontal grid lines differ from the vertical grid lines by π/2. 

So far, all the parameters characterizing the grid structure are acquired.  

 

Figure 4. Scatter diagram of sequence {ti} 

b.  Division of the detection regions 

The original grayscale image is then divided into several detection regions and centers of these 

regions are determined by the intersection points of the skeleton lines. In practice, the size of the 

detection region is set as 1.5S  In a medial-axis skeleton model, d8(p,q) denotes the chessboard 

distance between the points p(x,y) and q(s,t), and d8(p,P) denotes the distance from the point p to 

the point set P, as illustrated in the following Eq. (1) and Eq. (2), respectively, 

8d ( , ) max(| |,| |)p q x s y t          (2) 

8 8d ( , ) inf{d ( , ) | }p p z z P P        (3) 

z is an arbitrary point in P. If the point p satisfies the following condition: 

8 8 8d ( , ) d ( , ) d ( , )q p p q B B         (4) 

Then it can be considered as a point on the skeleton. In above equations, B denotes the set of 

points on the image boundary, q denotes an arbitrary point and inf denotes the infimum. Using 

this algorithm, the skeleton patterns are obtained and are displayed in figure 5(a) The intersection 

points of the skeleton lines can be calculated by: 

•I I g I                   (5) 

where, I denotes the skeleton image, g denotes a 3*3 all-1 mask, * represents the convolution 

operation and  represents the dot product operation. The units in  with values exceeding 3  I 
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were then extracted to form the connected regions. Thus, the centroids of the connected regions 

are the intersection points of the skeleton lines. A typical detection region is denoted by the white 

box in figure 5 (b). 

 

(a) Interaction points of skeleton lines                                  (b) Detection regions 

Figure 5. Skeleton patterns and detection regions 

c. Intersection point detection using ridge line fitting method 

The intersection point is generally hidden in the intersection region and exhibits no obvious gray 

features, therefore, it cannot be directly detected. In this presented work, the ridge line fitting 

method is proposed to accurately detect the coordinates of the intersection points by using the 

ridge lines of the grid lines as references. Using this method, the ridge lines of the grid lines are 

firstly detected, secondly, the segments of the ridge lines with intense disturbances are eliminated 

and the rest of the segments are fitted. Finally, the intersection points of the horizontal and 

vertical fitted lines are detected as the lower intersection points of the grid. 

In addition to being a topographic feature that can reflect the mountain trends, the ridge line is 

also an important image feature. For the discrete surface, the ridge line is a set of points which 

satisfies the following condition:  

2

max max
max min2

max max

0, 0,
k k

k k
t t

 
  

 
       (6) 

where maxk  and mink  denote two principal curvature functions, while maxt  and mint  represent principal 

curvature direction functions. The commonly-adopted ridge detection method based on the 

second-order partial differential can detect the main ridge line reflecting the trend of the grid lines, 

but cannot filter the interference ridge lines formed by the wrinkled surface incurred by noises 

[12-13]. Accordingly, the grid lines are scanned, the pixel points with maximum gray values on 

the scanning lines are detected, and are finally connected into ridge lines. 

Figure 6 displays a typical distribution of gray levels along the radial direction (calculated by the 

gray level inversion, in which 0 and 255 represent that the point is white and black, respectively). 
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The gray levels approximately follow a Gaussian distribution which implies that the maximum 

can easily be detected. Two scanning lines, vB  and hB , are shown in figure7 (a), with their 

advancing directions denoted by v  and h , respectively. It can be observed from the figure that 

the scanning lines are perpendicular to the grid lines. At each step of the advancing process, the 

pixel points on the scanning lines with maximum gray levels are detected. In case of several 

maximum gray levels, the centrally-located point is selected. The pixel points with the maximum 

gray levels of the two scanning lines are then connected into vertical and horizontal ridge lines, 

denoted by vG  and hG , respectively, as shown in figure 7 (b). 

 

Figure 6. Typical distribution of gray levels along the radial direction 

Due to the limitation of the grid printing level of the films, disturbances exists in the ridge lines. 

Especially, the disturbances in the intersection regions of the ridge lines are too intense to reflect 

the tendency of the grid lines. Accordingly, the sections of the ridge lines within the intersection 

regions are eliminated (as shown in the box in figure 7 (b), with a size of 1.5d ). The rest of the 

vertical and the horizontal ridge lines are denoted as vG  and hG , respectively. 

                                       

(a) Scanning lines                       (b) Ridge lines       (c) Fitted ridge lines and  intersection point 

Figure 7. Intersection point detection 

After the elimination process, the quadratic polynomial fitting is conducted on vG  and hG , 

respectively; and the fitting results are represented by the thick dotted lines in Figure 7(c). 



L. M. Yang, A. H. Zhang, D. M. Lin and L. Zhu, A NOVEL GRID INTERSECTION POINT DETECTION AND 
MATCHING METHOD IN THE BINOCULAR PULSE MEASUREMENT SYSTEM 

265 

Specifically, the vertical and horizontal fitted lines are denoted by vF  and hF , respectively. 

Assuming that ( )f x  denotes the fitting polynomial, and the sequences {( , )}h hi hiF x y  and 

{( , )}v vi viF x y  denote the fitted lines, the following can be obtained: 

1,2,...,

( ( ))

1,2,...,

( ( ))

vi

vi vi

hi

hi hi

y n

x round f y

x n

y round f x











            (7) 

Obviously, the intersection set v hF F  has at most one element, which represents the intersection 

point of the fitted lines and is also the intersection point of the grid lines to be detected. If this 

intersection set is empty, the point with minimum Euclidean distance from vF  to hF  is searched, 

i.e., the intersection point of the grid lines. 

d. Matching of the intersection points 

The matching of the left and right film images is a typical example of narrow baseline matching, 

that is, the corresponding intersection points of the grid lines in the left and right images are in 

close proximity. Figure 8 illustrates the intersection point matching in the presented work, in 

which “+” and “o” denote the sets of the intersection points in the left and right images, 

respectively. Based on the above-described property, the Euclidean distance between each 

intersection point in the left image and the detected intersection point in the right image should be 

less than a threshold value. A matching point pair is formed when the above mentioned condition 

is fulfilled. The matching process is implemented in a similar way until all the intersection points 

in the left and right images are matched. According to past experience, the threshold value is set 

as 2d . 

 

Figure 8. Intersection points in left and right images 

 

IV. EXPERIMENTAL RESULTS AND ANALYSIS 
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Four healthy college students have been selected as the experimental subjects in this presented 

work. For each student, a 10-second video has been collected at a sampling rate of 10 fps (frames 

per second), that is, a total of 400 grid images have been collected. Considering that human pulse 

signals are slight, the films exhibit fairly small deformations and the acquired grid images are 

quite similar even among different subjects. Figure 9 presents the image acquisition device. 

 

Figure 9. Image acquisition device 

a. Analysis of the experimental results 

Figure 10 presents the typical images captured by the cameras and the detected intersection 

points using various methods, namely, the proposed method (i.e., to detect the intersection of the 

fitted ridge lines), the morphological method, the SIFT descriptor and the SURF detector. After 

the comparison, it has been concluded that the proposed method is of most accuracy in detecting 

the intersection points of the grid lines, followed by the morphological method, while the SIFT 

descriptor and the SURF detector exhibit poor accuracies. The detection has been conducted on 

several sub-regions using the proposed method; specifically, the number of the intersection points 

is firstly determined and the original image is divided into several detection regions with one 

intersection point in each region; then the detection is conducted on each sub-region using the 

ridge line fitting method. Using the morphological method, the binarization processing is firstly 

conducted on the grey-scale image, after that the grid lines are disconnected using the erosion 

operation to form the isolated intersection region, and finally, the centroids of the regions were 

adopted as the intersection points of the grid lines. However, the morphological method has 

failed to accurately detect the intersection regions on the image edge. SIFT descriptor and SURF 

detector both exhibited high sensitivities to the image noise and poor accuracies in detection. 
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      (a) Proposed method                       (b) Morphological method 

    

(c) SIFT                                                 (d) SURF 

Fig.10 Comparison of the detection results using different methods 

Generally, there are two indices that can be used to assess the accuracy of the intersection point 

detection, i.e., recognition ratio and false positive ratio. The detection results consist of two parts, 

some points in the intersection regions and some points outside the intersection regions, the 

former of which alone are the correct intersection points of the grid lines. Accordingly, the 

recognition ratio is expressed as:  

ina

ALL

N

N
                      (8) 

where, ALLN  denotes the actual number of the intersection points of the grid lines and inaN  denotes 

the number of the real intersection points in the detection results. A higher recognition ratio is 

better, since it suggests that less intersection points have been missed in the detection process. 

The maximum recognition ratio is 1. The detected points outside the intersection regions are false 

detected points, therefore, the false positive ratio can be expressed as:  

all ina

ALL

N N

N



                   (9) 

where, allN  denotes the total number of the detected intersection points. In practical detection, the 

smaller the false positive ratio is, the better the detection results are. The minimum false positive 

ratio is 0. 

At the sampling rate of 15 fps, 40-second videos were then synchronously captured by the left 

and the right cameras, respectively. A total of 600 image-pairs have been obtained; the 
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intersection points of the grid lines have been detected using the above-mentioned four methods. 

For each method, the average recognition ratio and the average false positive ratio are calculated, 

and the results are listed in table 1 and 2, respectively. 

Table 1: Comparison of recognition ratios 

Methods 
Proposed 

method 

Morphological 

method 

SIFT 

descriptor 

SURF 

detector 

Left image 

Right image 

1.00 

1.00 

0.94 

0.92 

 0.36 

 0.33 

 0.28 

 0.26 

Table 2: Comparison of false positive ratios 

Methods 
Proposed 

method 

Morphological 

method 

SIFT 

descriptor  

SURF 

detector 

Left image 

Right image 

0 

0 

0.04 

0.11 

 0.60 

 0.56 

 0.37 

 0.35 

 

b. Invariability tests 

In actual detection process, both the adjustments of the camera’s object distance and the 

variations of the angle of view may lead to affine deformation of the collected images. To 

examine the invariability of the proposed method in the detection process, a series of 

transformations such as shrinking, expanding, rotating and shearing are conducted taking the 

right image as a test image and then the proposed method is applied for detection. Figure 11 

presents the detection results, from which it can be observed that the proposed method is still 

accurately detecting the intersection points and it is immune to affine deformation.  

                         

(a) Reduced image            (b) Expanded image        (c) Rotated image           (d) Sheared image 

Figure 11. Detection results after affine transformations 

 

V. DISCUSSIONS 
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a. Comparison of the references 

In the detection of intersection points, the ridge lines, the skeleton lines and the center line can all 

be selected as reference objects; however, only the ridge lines have a high stability and 

uniqueness. Although, the skeleton lines are easily detectable but they exhibit the following 

problems: firstly, in an intuitionistic view, each segment of the skeleton line has inherent S-

shaped fluctuations and cannot accurately reflect the tendency of the grid lines; secondly, the 

skeleton lines are not unique since they are extracted from the binary image and the selection of 

threshold values in the binarization process is somewhat subjective; thirdly, the skeleton lines are 

quite sensitive to the stains on the image. Figure 12 shows the comparison of the detected 

skeleton lines and ridge lines from the original detection region and the polluted detection region 

after addition of noise. Apparently, the skeleton lines are significantly affected by the stains while 

the ridge lines are almost unaffected by the stains and noise, with a high stability. The center lines 

of the grid lines refer to the lines connecting the center points in the width of the grid lines. 

Similarly, the center lines are easily affected by the selection of threshold values in the 

binarization process and the stains on the image. They exhibit a poor stability and are not unique. 

Besides, the ridge lines, the skeleton line and the center line are all quantized forms reflecting the 

tendency of the grid lines, but the ridge lines can obtain the most accurate results. Therefore, to 

select the ridge line as the reference object is more reasonable. Figure 13 (a) shows a segment of 

a grid line in gray mode, the skeleton line is coincident with the center line, as shown in figure 13 

(b). Figure 13 (c) shows the detected ridge line. It can be observed from figure 13 that the 

detected skeleton line (or the center line) is losing the original inclined trend. Moreover, whether 

the skeleton line (or the center line) is located in column t or column f is determined by the 

adopted algorithm, which implies that there is a high subjectivity. Comparatively, the ridge line is 

not affected by the adopted algorithm and is accurately reflecting the inclined trend of the 

original grid line. Additionally, the detected ridge line is subjective and unique. 

Conclusively, the adoption of the ridge line as a reference in the detection of intersection points is 

most reasonable choice which enrich the detection results with many advantages such as 

distinguishability, uniqueness, stability and invariability. Moreover, using the ridge line as the 

reference object can avoid the ambiguity in matching. The ridge lines possess the required 

characteristics of the matching primitives in the binocular vision system. 
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(a) Original area                      (b) Polluted area 

                        

(c) Original skeleton lines and the fitted lines of (a) (d) Skeleton lines and the fitted lines of (b) 

Figure 12. Comparison of stability 

 

                         (a) Grayscale pattern     (b) Skeleton/Centerline    (c) Ridge 

Figure 13. Comparison of accuracy 

b. Analysis of the ridge line fitting accuracy 

The size of the detection region, L, affects the fitting results. As described in Section 3.1, the 

average distance between the unidirectional neighboring grid lines is 55 pixels, i.e., 55s   pixels. 

In this section, experiments have been conducted on the cases in which L is equal to, 

0.6 , 0.7 , ... ,1.5ss s respectively, and the sets of the intersection points

0.6 0.7 1.5{( , )}, {( , )},..., {( , )}i i i i i iP x y P x y P x y , are obtained. Using 1.5P  as the reference, the errors of the 

intersection points in the other sets, 0.6P  and 0.7P , from the corresponding intersection points in 

1.5P  are calculated, and the error sets, 
0.6 0.7 1.5

{ } { } ... { }, , ,i i ie e eE E E , are obtained. Then the average 
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error, 0.6 0.7 1.5, , ...,e e e , are calculated. The relationship of the average errors with L is presented in 

figure 14. It can be observed that, the average error decreases with the increase of L, presenting a 

very apparent convergent tendency, i.e., the larger the L value is the more accurate the fitting 

results are.  

It is obvious that the partitioning detection mode has limited the value range of L. To further 

enhance the detection accuracy, longer ridge lines or even entire ridge lines must be fitted. The 

printing quality should also be improved to enhance the detection accuracy of the intersection 

points of the grid lines. 

 

Figure 14. Relationship between the fitting errors and L 

 

VI. CONCLUSIONS 

 

In this article, a novel and accurate grid intersection point detection method has been proposed, 

based on the image segmentation and the ridge line fitting process. The grid image is firstly 

divided in accordance with its global structure features into several detection regions, each of 

which includes one intersection point. In this method, the detection range has been significantly 

narrowed and the number of the intersection points has also been determined, both of which have 

contributed to the effective avoidance of over- and missed-detection problems. In view of the fact 

that the generalized intersection points have no obvious gray features, the ridge line fitting 

method has been put forward, i.e., ridge lines have been adopted as references to achieve an 

accurate positioning of the intersection points. Finally, the intersection points in the left and right 

images have been rapidly matched based on their distribution characteristics. The experimental 

results have demonstrated that the recognition ratio of the grid intersection points is up to 99%, 
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that the false positive ratio is 0 and that the matching accuracy of the intersection points in the 

left and right images is as high as 100%. 

The proposed ridge line fitting-based method has been proven to have a high accuracy and high 

anti-interference performance. Moreover, the detection results are stable, unique and invariable, 

which can satisfy the demands of the binocular pulse 3D reconstruction. The proposed ridge line 

fitting-based method also have high application values in various related practical fields such as 

image measurement, structure-line-based 3D stereo vision detection. 
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