A NOVEL HYBRID LOCALIZATION METHOD FOR WIRELESS SENSOR NETWORK

Wang Jun*1, Zhang Fu1, Ren Tiansi1, Chen Xun1 and Liu Gang2
1College of Agriculture Engineering
Henan University of Science and Technology
Luoyang, Henan, Z.C.:471003, P.R. China
2Key Laboratory for Modern Precision Agriculture System Integration Research,
Ministry of Education, China Agricultural University
Beijing, Z.C.:100083, P.R. China
Emails: wj@haust.edu.cn

Submitted: Mar. 2, 2016 Accepted: June 30, 2016 Published: Sep. 1, 2016

Abstract- Wireless sensor network is a kind of brand-new information acquisition platform, which is realized by the introduction of self-organizing and auto-configuration mechanisms. Node localization technology represents a crucial component of wireless sensor network. In this paper, a localization method based on kernel principal component analysis and particle swarm optimization back propagation algorithm is carefully discussed. First of all, taking KPCA as the front-end system to extract the main components of the localization information, and then regarding the nonlinear principal components extracted from distance vectors as the input samples, and meanwhile taking the coordinates of vertices in addition to the region boundary as the output samples, the PSO-BP neural network is trained to achieve the localization model. Finally the localization of unknown nodes can be estimated. The simulation experiment result showed that the method has high ability of stability and precision, and meets the practical need of localization.

Index terms: Wireless sensor network, localization, kernel principal component analysis, particle swarm optimization, back-propagation algorithm.